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Distributions
A CDF F(t) is right continuous,
limayo F(t + A) = F(t). CADLAG.

ie.,

Transformation of distr.
If g is a 1-1, differentiable function, then
Y = g(X) has pdf

) ‘ _

el = 1t ) |25

In multivariate case, analogously,
fY(yl, . ay’ﬂ) =
= fx(gr W),y 90 ().

Student’s theorem
Let Xq,...,Xn be ii.d.
and S; = L. 57" (X, — X,)?
1. X, —N(M,a /n);
2. X, and S2 are independent;
3. (n— 1)52/02 ~x%(n —1);

Xl
4. T= S/f t(n — 1).

Gamma distribution

supp(X) = R*

PDF: f(z) = %xa_le_m, CDF': omit.
MGF: M(t)=(1—t/8) “fort < f

E[X] = /B, Var[X] = a/B?

Notes: I'(1) = 1, I'(a) = (= 1)T(x—1), if
l<aeN,T'(a) =(a—1),T(1/2) =/
x%(r) distribution

supp(X) = R", PDF: omit.

MGF: M(t) = (1 —2t) /2 for t < 1/2
E[X] =r, Var[X] = 2r

Notes: For aseq. {X; ~ x?(r:)}i2; of in-
dep. r.v., 330, Xi ~ P (07, 7).

If Z ~ N(0,1), then Z% ~ x?(1)

~ N(p,0?)
. Then,

r.v.

Poisson distribution

supp(X) ={0,1,2,...}

PMF: f(z) = *%M CMF: omit.
MGF: M(t) = exp(A(e’ — 1))

E[X] = A, Var[X] = A

Binomial distribution
X = k successes in a sequence of n i.i.d.

draws.

PDF: f(k) = (Z)pk(l —p) "
CDF: F(k) = SF | (i)

MGF: M(t) = (1 — p+ pexp(t))”

E[X] = np, Var[X] = np(1 — p)

Bernoulli(p) distribution

1, b.

I ERRT
0, w/prob.1—p

PMEF: f(z) =p*(1—p)'~"

MGF: M(t) = q + pe'

E[X] =p, Var[X] = p — p*

Normal distribution N (u,0?)

PDF: f(z) = exp [~ &= “)2)
o2 202

CDF: F(z) = ®((x — p)/0)

MGF: M(t) = exp(ut + o*t*/2)

Notes: For a seq. normally distr. in-

dependent r.v. {X; indep- N (i, 07) Yy,

Doy Xi ~m N (T s 2o 102)

If X ~ N(p,X), then the linear comb.

Az + b~ N(Ap+ b, AL A').

For N(0,1): E[X] =0, E[X?] =1, E[X?] =

0, E[X*] =3, E[X°] = 0, E[X®] = 105

Uniform distribution Ula, b]

supp(X) = [a, b]

PDF: f(z) = ;1

b—a

CDF: F(z) = 2=2

exp(tb) —exp(ta) if ¢ 0
MGF: M(t) = to=a) ife#

1 ift=0
E[X] = (a+b)/2, Var[X] = (b — a)?/12

Student’s ¢-distribution t(v)

Def: t(y):M,V:n—l

VX%(n)/n
MGF: A, E[X] = 0if v > 1, E[X] = un-

def. if v <1, Var[X] =v/(v —2) if v > 2,
Var[X] = oo if v < 2

Exponential distr. Exp(})
supp(X) = R*

PDF: f(z) = Aexp(—Az)

CDF: F(z) =1 — exp(—Ax)
MGF: ;‘t, for t < A

E[X] =)', Var[X] = 272

F distribution

For U ~ x*(r1), V ~ x*(r2), W = §i2.
Then W ~ F(r1,r2).
PDF: omit., MGF: A
[E[X] = 7"2/(7'1 — 2) for ro > 2,
23 -2
Var[X] = ra(r £ r2 = 2) for ro >4

ri(re — 2)2(r2 — 4)

E[]’ PH’ M( )9 etc.

LoUS: E[g(X)] = [, g(z)dFx(x)

MGF: For arv. X, M(t) = E[e*!] for
—h < t < h where the expectation exists.
MGF generalize to joint r.v.’s Xi, Xa:
MX1,X2 (tl, tz) = E[€X1t1+x2t2}.

AlSO7 MX1 (tl) = ]\4}(1,)(2 (tl,O).

For pos. integers m, E[X™] = M (™ (0).

A useful thm: Fy(s) = Fx(s), Vs <

My (t) = Mx(t), YVt € (—h,h).
DeMorgan’s Laws:
(CLUCy) =cf ncy,
(CinCy)? =cfucy.

Boole’s inequality:
P(ULCH) < 3P (C
i=1

Bonferroni’s inequality:
P(CiNC2) >P(Cy)+P(Cs) —

Permutations:
n!
T (= k)
Combinations
n n!
Cn = =
F k k! (n — k)!

Inequalities
Markov’s inequality:
and a > 0, then
P(X[>a) <
Chebyshev’s inequality:
P(X — x| > ) < 5
Jenses’s inequality: For a convex ¢,

P(E[X]) < E[p(X)]
Indep. & cond.

Def. of indep. events:
P(AN B) =P(A)P(B)
Def. of E[-|-]: Forrwv.’s XY,
E[Y|X] = argmin E[(Y — ¢(X))?]
Law of Total Progability:

Z]P’ A|C;)P

Law of Total Expectatlon

= ZE[X|CZ-}]P’(C

P(B)
P(4)
Law of Iterated Expectations:
E[Y] = E[E[Y|X]]
Take-out-what’s-known:
ER(X)Y|X] = h(X

If E[|X]] < oo

E[X]]

Bayes’ rule:

P(A|B) = P(B|A)

JE[Y]X]

Convergences
Monotone Conv. Thm.
For a seq. meas., non-neg. func. {fn}» on
(2, F,P), s.t. fn < fn+1 and fr — f,
Jim E[f,] = E[f].

Dominated Conv. Thm.
For a seq. meas. func. {fn}n on (Q,F,P),
suppose p-w conv. a.s. to a func. f, and
dg > 0, and

|fn(2)] < lg(z)] Va,n, and E[|g]] < oo.
Then E[|f|] < oo, and

lim E[f,] = E[f].



Central limit theorem:
If X; is an i.i.d. seq.,

V(X — E[X]) 5 N(0,02)
Delta method:

If /n(Xn — 0) 5 N(0,0%) and g(-) is con-
tinuously differentiable at 6, then
Vi(g(Xn) = 9(0)) 5 N (0,0%[¢'(0)]).

Convergence in P, L", d, a.s.

B P{w: Xn (w) = X (w)}) =1

B[ Xn—X|"]—0

: If Ve > 0, we have
nlLIr;oP[|Xn—X\ >e=0=

= 15

=lim P[(X, - X) < ¢ =1

n—00

< For {X,} and X, let the cdfs be Fy,

and Fx. Let C'(Fx) denote the set of x

where F'x is continuous. X, i) X if
nli_)n;oFXn (z) = nler;oP (Xn € (—o00,2]) =

= Fx (z),VIEC(Fx)

Bounded in prob.: if Ve > 0, 3B > 0
st. VYn > Ne € Z, P[|X,| < B] > 1—,
then X, is bound. in prob.

About O,(1),0,(1), etc.

o If X, % X, then X, + 0,(1) % X

o (a+0,(1) 4 (b+0p(1)) X0 > a+bX

e 0, (1) +0,(1)=0,(1)

° 0, (1)-0p(1) = 0p (1)

® Oy (1)-0p(1) =0 (1)

®0p (1) +0p (1) =0p(1)

® 0, (1) -0y (1) =0, (1)

o (X+0p(1)+ (Y40, (1) =
=X+Y +o0,(1)

e (X+0p(1) - (Y+op(1)) =
=X-Y+o,(1)

e gla+top(l))=g(a)+op(1)

e Forrv. X, X -o0p(1) = 0p(1).

< does not imply =N

Ls
=
P

—
d
_>

L" if s<r
AN

d
= 5

a.s.

B —
X 4 X and Y, Y (marginal conv.)
does not imply (X,,Y;,) 4 (X,Y) (joint
conv.).

Cont. Mapp. Thm and Slutsky:

If X,, % X and g(-) is cont., then g(X,) %
g(X). If A, 5 aand B, 5 b (a,b are
const.), then A, X,, + By, 40X +b.

Identification
Def: h* is identified within H < Vh #
h* € H, Fyyx(~;h) #* Fy,x(~;h*).

Linear regressions

Geometric intuition

P, =X,(X,X,)"'X,, M,, = I,, - P,
]Pn]Pn = PYH MnMn = Mn» ]P)nxn = Xn

P,M, =0, P,M, =0, M, X,, =0
Also, [lal* = [[Pral® + [Mnall.

OLS regression

Estimator:
B = (X, X)X Y, =

1 & T
= (n ;XX) b ;Xim
PnYn = Xpfn
OLS assumptions:
1{Y;, Xo}r, is iid;
2. E[Y?] < oo;
3. E[XX’] < oo and invertible,
4. E[IX|PU?] < o0
Bn is a consistent estimator if OLS 1-3 hold.
Asympt. norm.: If OLS 1, 3, 4 hold,
VB = Bo)
N(0, BIXX)TEXXU*EXX]) )
Homosk. If E[U?|X] = 0 w.p. 1 over X.

OLS w/ intercept

. /702

(a, B) = argmin ;(Yi —a—Zb)
5 - L= V)(Zi= Z.)

! Yia(Zi—Zn)r
Conditional mean is linear
Assume E[Y|X] = X'qo, i.e., linear. By
LolE, E[(Y — X'v)X] = E[Y X]-E[Y X] =
0, which implies that E[(Y — X'y0) X] =
E[(Y — X'Bo) X] or that By = o, whenever
E [X X'] is full rank.
Thus, the OLS estimand £y corresponds to
the cond. exp. param. in E[Y|X] = X’'So.
Best linear predictor
IfY €R, X € R, E[Y?] < 00, and E[X X’
is full rank, then

Bo = arg minE [(Y _ X’b)2] -
beRA

= arg min [(E Y|x] — X’b)2] .

R2 — 1 _ RSS

Meas. of fit: Tes

RSS = % D (Vi = Ya) = (Xi = X)) Bn)?

i=1

where,
n

1 — _
T = - Y. -Y.
SS n;( )

The Wald test:

linear restriction we choose a r € R? and

Suppose for the single

b € R and we are interested in testing:
Ho : v'Bo = b versus H1 : 7’8o # b. A
special case would be setting r to a vector
of zeros with one one and setting b = 0,
which would test a single regressor is equal
to zero.
The Wald test is set up so we reject for large
values:
o = U A ’\/ﬁ(r'ﬁn - b)' > C1_a/a)
Thm Let the OLS-2 hold, 02 = r'Sor, Z ~
N(0,1), and
So=E[XX']E[XX'UE[xX]".
If v’y = b, then it follows:
’\/ﬁ{r’ﬁn — b}‘ L 160Z| ~ [N (0,7'or)|

Thm If OLS-2 holds, £, % %o, 0o > 0,
and 7’8y = b, then (where c1_q is the 1 —

quantile of the standard normal random

variable):

. Vs

hm P(i]\ T ,Bn - bl > lea/Q) = Q.
R~

IV regression
IVs are used when X is correlated with €, in
which case OLS results will be biased. Such
correlation may occur
1. when changes in Y change the value
of at least one of the covariates ("re-
verse” causation);
2. when there are omitted variables that
affect both Y and X; or
3. when X is subject to non-random
measurement error.
X is endogenous if any of above cases ap-
ply. If an instrument is available, consistent
estimates may be obtained. An instrument
is a variable that does not itself belong in
the explanatory equation but is correlated
with the endogenous explanatory variables,

conditional on the value of other covariates.

Estimand: [j solves
E[(Y — X'ﬁg)Z] =0

Estimator:

A . 1 ! 2
n = — Y, - X3b)Z;
B = arg min || ;( )Zil|
= (XRZnQnZ0X0n) " X0 Zn Q02 Y

Consistency: If{Y; e R, X; € R Z; €
R%1}™ | is i.i.d. and holds for the moment
condition for some [So; 0, — Q for some
Q, rank(E[X Z']) = dy; and E[|| X Z'||] < oo,
then f3, is a consistent estimator of Bo.
Asympt. norm.: Under same assump-
tions as for consistency, and E[ZZ'U? <
00, then the limit distr. of \/n(B, — Bo) is

N0, KE[X Z'|QE[ZZ'U*|QE[Z X' K)
where K = (E[XZ'|QE[ZX']) " .



2SLS and 3SLS/Choice of Q:
Choosing n = (% > E:ZZ'Z{)_1 is
2SLS, equiv. with the following algorithm:
1. Regress X,, on Z,, and fit Xn
2. Regress Y, on Xn to estimate fo.
We can see the equivalence from plugging
in the 2SLS Qn into the Bn equation:
B = (X0 Ln (L0 Zn) ™ 2y Xn] ™
X 2 (2 Z0) " 20 Y =
= [(PrXn) (P Xn)] ™' (PrXan) Yn =
= (XX, XX,) ' XX, Y.
Remember: PZ = 7, (Z\,Z,) " Z.,.
3SLS corresponds to the following;:
1. Obtain Bn that is consistent for So.
2. Create U; = (Yi — X/f3,) and set
Qn = (% ?:1 ZZZZ{Ub
3. Solve B, =
= X Zn Q0 70, X X 2 QU0 70, Y
with Q..

LATE — Local aver. treat. effect

Y €R, D € {0,1},and Z € {0, 1} such that
we observe: Y =Y (0) + D (Y (1) — Y (0)),
D()if Z=1,and D(0) if Z =0; i.e., Z
affects the treatment decision. Similarly we
observe: D = D (0) + Z (D (1) — D (0)).

We make two LATE assumptions:
LATE-1

(a) (Y(1),Y(0),D(1), D(0)) LZ;

(b) P(D (1) # D(0)) > 0.
LATE-2:
(a) monotonicity: D(1) > D(0) a.s. — no
defiers.

We can obtain the LATE estimator using
2SLS to estimate the [ that we assume

solves the moment restrictions:
1
E[(Y — Boo — DBo1)

]=0
Z
If we solved this out, we would find that:
_ Covly, Z]
por = Cov[D, Z]’

By Law of total expectations,
EY|Z=1-E[Y|Z =0]
/801 = — — )
E[D|Z=1]—-E[D|Z =0
or using LATE-1 that we have:

o1 = E[(Y (1) -Y (0)(D(1) = D(0))]
o E[D (1) - D (0)]
Under LATE-2 we then have:
Bor=E[Y (1) =Y (0)|D(1)—D(0)=1].

This Bo1 is the TE on the compliers/LATE.

Panel data

Clustered data
Thm Assuming
1. {Ys, X4}, is iddy
2. E [thl nUlt} —0;
3. E[X/X;] is finite and invertible; and,
4 ST [|Xul? UZ] < oo
then:
\/E(Bn - 50) _d>
T

(0, (SE[(Z XitUit)(Z XitUit)'1S),

where S = E[X/X;])~!
We can then estimate the asympt. variance

N

of Bn with the sample analogue

Z ( > Xuli) ZthUn )

=1 t=1

where Uiy = Yy — itﬂn
n —1

(% Zi:l Xz{Xi) :

Split the middle term into a

and § =

“standard

term” and a 2nd corr.-within-cluster term:
T

%Z <(§ :XitUit)(E XitUitY) =
i=1 t=1 =1
1 .

i=1 t=1
n T-1

+= Z SN XauXiwUnUspr.

i=1 t=1 t/>t

Random Effects
Assume U;; contains an individual error A;
and an individual-time error Vi, s.t.:
Yie = Xifo + Ai + Vi
Uit

In an RE model, we assume that X;; is ex-
ogenous, i.e. uncorrelated with (A;, Vi) as
well as that A; and V; are 1.i.d.. In FE we

are concerned with corr. b/w A; and Xj;.
RE-1:

(i) {V:, X;}io, is ii.d. and satisfies the
RE model;

(ii) ]E[AJXJ =0 and ]E[V”XZ,AZ] =0

(iii) E[A?|X;] = 0% and E[ViV{/|X;, Ai] =

O"Z/IT

RE-1 (i) implies E [(Yit — X{,B0) Xit] =
OVl < t < TAL1 <i<T =—
E[X;Q(Y: — XifBo)] =0

RE-2:

(i) Q. B QA E[X[QX,] is full rank;
(i) E[IX:]?] < oo

Given RE 2 ()

B = ZX 0nX,) ZX 0,.Y5).
Asympt. norm.: Let ¥ = E[U,U;|X;]

and RE-1 and RE-2 hold. Then:
Vn ( 3 — ,30) 4
N (0, SE [X;Q5QX;] S)

where S = (E[X/QX,]) "

From the asympt. var. for the FE estima-
tor, we can see that, as in IV, there is an
efficient O = ™! = (E[U,U]|X,]) ™"

We have the following procedure for RE:

1. Obtain a Bn that is consistent for 5o
— for instance by solving the sample
analogue of the moment conditions
with Q, = I7.

2. Employing Bn create residuals Uit =

( it — nﬁn) and motivated by the

structure of E [UlU'|X1-] let:
2 1
& = nT(T— 1)/2

ab= 33 (0n) - 6%
3. Employing 6% and 6%, compute Bif
by solving the Bff‘ estimation problem
with (2, set to equal 6% + 6% on the
diagonal and 6% o/w.
Fixed Effects
In FE model, we maintain the same model
but change our assumption on the residual
Uis:

Yie = X180 + Ai + Vi
—_——

where U;; contains an indivigﬁal specific A;,
and an individual and time specific V;;, and:
FE-1
(i) {Ys, X}, isiid. from FE model;
(ii)) E[Vi|X:, A:] =0
We no longer require that E [A4;|X;] = 0.

FE as Demeaning We have: Yit =Y —
Y = X/,fo + Viz and

E[VieXie] = E[(Vie — Vi) (Xir — Xi)] =

= E[E[(Vie — V)| X:](Xie — X,)] = 0.
Define FE regressor as:

Afe Y 2

= arg min Z > (v i)

=1 ¢=1
Thus this becomes the usual OLS problem.

FE-2
(1) Zf LE [ tizt] is full rank;

[ZX’tV’t EXant :|

leen FE-1 and FE-2,

’)

Asympt. norm.:
then:

Vn (Bff - 50) 4
(i thvzt)(i XiVie)'

N (0, BE




where B = (X/_, E [X,tX{t])_l We can
estimate this variance with sample ana-

logues.

Hypothesis testing
Basic concepts: A test ¢ is a procedure
to choose between two hypotheses Hp and
Hy. {Ho, H1} is a partition.
Hy:0€0©9COvs Hi:0€0; CO.
Ho:PePoyvs H :PePy
The critical region C, characterizes .
Given data X, ¢ rejects Hy if X € C,,.

or,

Type-1 error is when Hj is rejected but
true. The prob. of type-1 error is
Py(test ¢ rejects Ho) = Py(Cy), 6 € Og

Type-2 error is when Hy is accepted and
false.
Py(test o rejects Hi) = Pg(C’fp), 0 ecO.

Size of a test is the highest prob. of
type-1 error over all § € ©g. That is,

Size of test ¢ = sup Py(C,) = sup Ep, [¢n]
0€0g Py

vl «

is < a. A test has several sign.

Test ¢ has sign. if the size of ¢
Ivl., i.e.,
a € [size of ¢, 1].
The power of a test is the highest prob.
of ¢ rejecting Hy when H; is true.

Power of ¢ = Py(C,,), for any 0 € ©;.
“the probability under the
null hypothesis of observing a more extreme
outcome than the data X”.

p-value = inf{a € [0,1] : X € C3}.

A p-value is

UMP Test and N-P Lemma
The power function of ¢ is
K, (0) = Pyo(p rejects Hp).
Uniformly Most Powerful:
UMP with sign. vl « if

sup K,(0) < a, and
0€0g

K,(0) > K,,(0) for any 0 € ©4,
where @, # ¢ has sign. vl a.

A test ¢ is

A UMP test exists when the null and alter-

native hypothesis are simple.

N-P Lemma: Let X = (Xi,...,X5)
have pdf f(x;60) and define the (simple) hy-
potheses

Hoiozeo V.S. H120:91.
Consider a test ¢ with critical region

_ . f(x;61)
= {l' c QX,n . f(x,@o) > ka}7

where ko is chosen so that the size of ¢ is
«. Then:

o is a UMP test with sign. 1vl a;

e any UMP test with sign. lvl a must
be a size-a test;

o if f(z;01) # kaf(x;60) a.s., then all

level-ao UMP tests are identical a.s.

Different tests

Likelihood ratio test: A LRT has criti-
cal region
Co={z=X:)z)=
;0
maxgco f(x;0) > kal,
maxgee, f(z;0)
where the significance level of the test is

o = max Py(A(z) > ka).

A thm: If certain ML regularity condi-
tions hold, then, under Oy,

maxgco f(z;0) ) d
LRT, =21 _—
" (maxeeeo f(@:0)

d 2

= x°(r), as n — oo,
where ©9 = {# € © : h(#) = 0.}, and 7 is
# restr. imposed on the parameters by ©g.

Wald test: Take a function h : R* — R",
where k is # parameters and r # restr.
Then,

Ho : h(0) =0, v.s. Hy :
Suppose 0, satisfies

V0, — 0) 5 N(0,V(0)) as n — oo.

h(0) # 0,.

Also, suppose there is a consistent estima-
tor V(6,) 2 V(). Then,
W,

Vilh(0))' [H OV @)1 0)]

Vinh(6n) % X (7).
H denotes Jacobian. The Wald test has
C, ={Xn € Qxn : Win(Xn) > kal,
where k,, is the a quantile of x2(r).

Time series

Strict stationarity: X is strict. stat. if
Xty Xepn) = (Xeys o, Xe,)

for any h, t1, and n.

Autocov. func.: If X; has E[X?] < oo,

Vt, s, then
Kx(t,s) = E[(X — E[X])(X, — IE[XS])].
Also,
Ix(h) = Kx(h,0), Yh € Z.
AlSO7 Fx(fh) = Fx(h)

Weakly stationarity: A process X: is
weak. stat. if

(a) E[X?] < oo for any t;

(b) E[X¢] =c € R for any ¢;

(¢) Kx(t,s) = Kx(t+ h,s + h) =

=Tx(t—s) for any t,s,h € Z.

A strict. stat. X; with Var[X,] < oo is also
weakly stationary.
A weak. stat.

strict. stat.

Gaussian process is also

Auto-corr. func: px(h) of X; is

I'x (h)
h) = Vh € Z.
px(h) T (0)’ €
IID Noise: X; is IID noise if obs. are

iid., E[X] =0, E[X}?] = ¢® < o0, and if
o2, ifs=t,
0, ifs#t.
IID noise is stationary.
White noise: A seq. X: is WN if the
autocorr. is zero, E[X:] = 0, and E[X?] =

0'2<OO.

Kx(t,s) =

IID noise is white noise.

A LLN: If {X;}iez is weak.
I'x(h) — 0 as h — 0, then, as n — oo,
Var[X,] = E [(X, — E[X:])*] = 0.

stat., and

Also, if ZZO:_OO |Fx(h)| < 00, then
nVar Z I'x(h) as n — oo.
h=—oc0
ARMA processes
Definition: A rand. seq. {Xt}tez is an

ARMA (p, ) if it is statlonary and
Xt+z¢er K —ut+20ut i

=1

where u; ~ WN(O o?), and ¢, 0; € R.

An alternative representation is
D(L)X: = 0(L)ue

Causal repr. of ARMA

seq. {gok},;";o s.t.

Zsl?kut k=

Theorem 8 An ARMA process is causal
iff the AR part ¢(L) has no roots |z| < 1.
And 6(L) has no common roots with ¢(L).
of an ARMA(p, q):

is an abs. sum.

)ut, Vt.

Find causal repr.
For ¢(L)X: = 0(L)es
1. Find roots A; of the characteristic
polynomial, i.e., ¢(z) = 0.
2. Then define caus. repr. ¥(L) b
X =9(L)ey =
= 0(L) = ¢(L)v(L)
3. By matching of coefficients, identify
1p; from the coefficient of L*.
4. Use that ¢ = 3%, cj/\;i.
Auto-cov. function of ARMA:
Y-W formulas: An ARMA(p,q) X: =
@(L)us has I'x (h) given by:
P

Ifh<q Tx(h)+> élx(h—k) =
k=1
q
= JQZngak,h‘
k=h
p
If h > q: Tx(h) + Y éxIx(h — k) = 0.

k=1



When us ~ WN:

Dx(h) =Tu(0) > @xprin, Vh.
k=—o0
Theorem 6: If {u;}icz is weak.

defined by

oo

X = Z prut—r = @(L)ut

k=—o0

is stat. with mean fi, Y po__ @r and
oo

= > > eielulh+k—j).

j=—00 k=—o0
If seq. of 'y, is abs. sum., then so is I'x.

Specific processes

MA(2) Xt =€ + Glet_l + Oget_Q:

x(0) = (1 +67 +63)0”,
x(1) = (01 + 6:02)0”,
Px(2)2920'2, Fx(h)zo, Ih‘ > 2.
AR(].) Xt = QSthl + €

Causal repr.:

Z¢€tj

rx(n) =2 _¢‘;, Vh.
AR(2) X; = 61X + do X0 + €5
:

TxO) = o T

Mx(D) = 1 2-Tx(0)

Tx(h) = 1T x (h — 1) + ¢oT'x (h — 2).
ARMA(1,1) (14+¢L)X: = (14+6L)uy:
Causal repr.: o = 1and p; = ¢/ — ¢ *

Ty (0) = %02,
Ty (1) = (1 —fni)EfZ— }) o2,

Tx(h) = (—¢)" T (1), Y|k > 1.

stat.,
Elut] = pru, {©k toeo is abs. sum., then X,

Martingale Limit Theory

Martingale def.: {X;}icz is m-g &
E[X¢|Fs] = Xs, VE>s.

M.d.s. def.: {ut}tez is m.d.s. &
Elu¢|Fs] =0, Vit > s.

By def., E[utus] = 0. An m.d.s. with finite,

constant variance is W N.

M.d.a. def.:

E[Ut,nlutfl,'ny Ut—2,ny - -

{ut,n}?zl is m.d.a. &
.]=0, Vt,n.

Marting.
martingale with Var[X;] < A. Then, as
t — oo, Xi s Xoo, where X is a r.v.
with Var[Xo] < A'.

converg. thm: Let X; be a

LLN:

Eluf] = of and supt(a )=
ZUtaS

Marting. CLT: If X;, is a m.d.a. with
bounded E[|X;,|*"%], and 352 > 6o > 0
st.n 'S0 X2, —5) 5 0, then

n” /2 Zt 1 Xen A

If w; is m.d.s. with
C < oo, then

Marting.

Asympt. Propert. of LP

Lemma on B-N Decompostion: Let
p(z) = Y5%, pra”, where the seq. {px}
is abs. sum. Then

p(x) = (1) = (1 —z)@(z),
where ¢(z) = >.5°, @ra”
Dotk P
If arand. seq. u; has sup, E[|u|] < oo, then

Xi =Y pruir = o(L)(ur)

k=0
for some seq. ¢k that is abs. sum. If also
> neo kler| < oo, then the B-N decomp. of
X, is the RHS of
oo
Xt =uy Z@k + U1 — Us.

k=0
Note that >-;2 ; or = (1).

Viz| <1
and ¢ =

A LLN: If u; has sup, E[|us|] < co and
Z —> 0 as n — oo,
n
t=1
then,
*ZXt %O Vt, as n — oo
for an Xt Zk:() prui—r def. by a seq.

{er}ilo st Dop g klew| < oo.

A CLT: Take u; s.t. sup, E[Jus]] < oo
and {@¢}i2o st Yooy klok] < co. Let
= Var[% S (ue —
n> 1. If lim, o 0'121.,17, > (0 and

E[u¢])] for any

) z:ﬁl(q;gf[utn 4 .1,
T (X — E[X)

e N0

where X; = > 72 prue—r for any ¢.

LLN of sample auto co-var.: If u; ~

iid(0,07), and > 3 klor| < oo, then for
Xe =3 00 Prlt—k,

n S XX 5 Dx(h).

t=1
Algebraic tricks

Z:

nn+1

ikz nn+1)(2n +1)
6 b

n? n-‘rl 1—2"

Zax =a-
(n—1)a "‘H —
e (a—l)2

1 .
= 5[90 + sin(z) cos(z)]

11—z

+(z

Examples

A simple test from Santos
#obs. n=1and W ~ N(u,1); pis un-
known.

Ho:pu<0vs. Hi:p>0.

Note that W < i + Z, where Z ~ N(0,1).
E.g., use ¢p(W) = L(W > ¢). Then,
size of ¢ = sup Ep[p(W)] =

PePg

=supP(Z >c—p) =
n<0

P(W>¢)<a, &

P(z>cia)=a e ci_a =3 (1 -a).

Another test from Santos
{W;}i, is iid. with variance 1. P = {P:
Ep[(W — Ep[W])?] = 1}. We want to test
Po : {Ep[W] < 0} v.s. Py : {Ep[W] > 0}.
For any P, /n(W, — Ep[W]) 4 N(0,1).
Then use test ¢, = 1(v/nW, > c1-a).
sup lim P(v/nW, > ci—a) <

PEPy "N

< sup lim P(v/n(W, — Ep[W]) > c1—a) =

PeP, PN

IP(Z > Cl—a) = Q.
Linear trend regr.
X; = pt + ur, ug ~ 44d(0,02), Xo = 0, and
Y: = X8 + ¢, where € ~ id(0, 02), €, and
u¢ are indep.

Derive asympt. distr. of OLS estimator.
Ao Z?:l Yi Xy

Brn = =5
i XP
A Doy Xeer
& Bu—B= n .
i X?
Then
—u?/3

2
%ZXE:%Z#JF%ZW#
T
2# 4,LL2 2 2
Var—Ztut :—UuZt —0

Ztutzop

By LLN, 2 Y u? = 0,(1). So 5 ¥ X7 -
%2. Then consider the numerator:

1 m 1
sztft = mth + qutﬁt =
=0p(1) + Op(n

since

1 N
Var[m Z tes] =

, by Markov ineq.

71), by Markov ineq.




and ) 5
oL0:

1 u
Var[m Zutet] =
Then, by m-g CLT
2 2

Var[# Ztet] 4 N(o, a 305 ).
By Slutsky,
n* (B — B) 5 N (0, =5).
What if €, and us are correlated fort =s
(and not t # s)? Only difference is that
Var[ns—l/2 ST ure] # o202, But this doesn’t
affect the asympt. distr. of g,.

30’E

Construct consistent estimates of pn and o2.

N 7ZtXt Ztut
=y =

Denominator — % and numerator:

1
5 Ztut = o0p(1)

S0 fin — p. For &2:

62 = LS (Vi Xefa)? =
%ZE? - %(Bn —-B)> Xiert
! PP

4 52 L 0,(n~Y?) by iid CLT.

w2

From before, (8, — ) = (’)p( =3/2) so
(Bn - B8)* = Op(n~?) and 3 YXP =
Op(1) implies 2> X7 = p(nz). Thus,
%(Bn - BPYX? = Op(n').  Also,

73 2. Xeer = Op(1) implies > Xiep =
Op(n'/?). Therefore, %(Bn —B8)> Xier =
Op(n™1). In summary, 6.%) 562

Two-sided hypoth. w/ unknown o?

Let X1,...,X, be iid N (u,o?
is unknown. Consider Ho : u = po Vv.s.

Hiy @ p # po.
Define LR test for these hypotheses.
& 2
max (X, o, 02)
f(X, pyare, 63s)
max,2 f(X7 1o, 02)

2In(LR) = nln (%

) where o?

) 3.

So, the (asymptotic) LR test is to reject Ho
iff . )
2In(LR) = nln (7%(()(;_ )’f(i))Q) > xa (1),
where x2(1) is the 1 — a percentile of the
x° distribution with df. 1.
Whats the critical region of the likelihood
ratio test with size a = 5%? The critical
region is
(X:nhn (M
S (X — X0

Estimate ARMA(1,1)
Xy =0Xi_1+e+e€_1 where e, ~ iid(o, O'z)
and |0] < 1.
Derive the distribution of the estimator
b, = 2 XiXia
S X1 X2
Estimator is equivalent to
R L S Fer—1)Xi—2
V0, — ) = L

1
. = S Xi—1Xi—2
Denominator:

) > x3s(1)}.

Use LLN for sample auto-covar. = I'x(1).

Numerator:

Z(Et +€-1) X2 =

- ﬁzmxm + Xio1) + 0p(1) + 0p(1).
The remaining term is a m.d.s. Take

On = E[€?(Xt72 + Xt71)2} =

=2(I'x(0) + T'x(1))o?.

Then use m-g CLT and Slutsky.
Provide a test with size a for § = 0. Use
Wald test. Under Hy : 6 = 0, \/ﬁén N
N(0,K). So, critical region is C' = {én >
Zi-g Elu {0, < —Zi_g £y

AR(1) error term
The model is Y: = 0 +u; with uy = pus—1+
e where |p| < 1, & ~ iid N(0,0%). All

coefficients 6, p, and o2 are unknown.
T
1
=7 Y
t=1

i: = Y; — 0.

Show that .
p D i Ul
T = — T 5
D=2 uf

is a consistent estimator of p and that pr —
p= Op(Til/Q)'

Observe that @y = us — (éT —0).
Denominator:
T
1o
“N"a2 =

T
t=2

1 ~
= 2ui + (0r —0)° -

= TﬁlZUf + O,(T) + Op(Til) =
2 12 B O°
=E[u?] + O,(T"'?) 5 5
Numerator:

1 T
= il =
Tt:2

1 A R
= pulue = (Or — O)][ue—1 — (0r —0)] =

9T—9 T T—1 5, _ gy —

TEutut 1+ 0,(T )
By def. ofut

1
= %Zut—l + fzﬁtutfl =

= pE[uy] + Op(T?).
Thus,
TS iy
Tty a
Op(T~1?) —1/2
= B+ o, - )
Which is what we sought.

pr—p= —p=

Derive the prob. limit of

2 1 o
O'unyf Ut -

and construct a root-T consistent estimator
of o2:

o2

From before, 63, 2 RN

—p2

Given that pr is consistent implies for the

following estimator
2
or = (1- PT) Ou,T =

= (1= 0"+ 0T 7).

2
o —1/2 _
(s o) =
o + O, (T™).
Sample size AR(1)
For a model YV; = 40(2)Yt,1 + €, by LLN for
2

mixed processes,
UE

How large a sample would we need in order
to have 95% CI s.t. Y, differed from the
true value zero by no more than 0.17

The 95% CI for the true value is

{Y, + Zl,%y/Var[Yn]} =
_ 2
= {Y, +1.96- ok

n(1 — 463)2 g

Soweneed1.96-1/n<17j92)2<01<:>n>

19.6%52
(1—462)2"

Trend regr. #2 (fall comp 2018)

Y: = 0op" + e,
2 2
s 1
(0, — o) A0, A,
72n 2t
ZP - 5

Exp. trend regr. (HW4)
Show consistency and limit. distr. for below
estimator of following model.

Y: = p'0o + ue, us N/\/(0,(72).

() ()

2
Use that & implies 5.
. Y,
E[(6n — 0,)%) = E[( =tz P 1t
t=1P
i -1
p?pPn—1

—6,)%] =

— 0 asn — oo.



2 ~
So, 0, N 0o, which implies 6 5 0o, i.e.,

that the estimator is consistent.

Deriving limit. distr.: Rewriting as
—n n t
n/n _ Ut
(O — 0,) = P 2= P U

1 n ot
2 Zt:1 P
The denominator'
2n+2 1

7277, 2t 7271, - _
p = _— =

p?—1
_ p —p —2n . p2
p?—1 pPP=1
Define Z, = Y1, p'~
Then, by i.i.d.

Numerator: "up =
n—1 —
t'=0 P

N(0,0%),

n—1

Zn ~ N (0, Z(ﬂ)f’az) =

t/=0

t,
Un—t’- U~

—2n

Then the MGF Mn( ) of Zn is
1— —2n
Mn(t) = exp(O'Q#tQ).
By Dominated convergence theorem, then
2
. _ ag 2
nh_{r;o M, (t) = exp(i1 — p—Qt ).
in MGF < conv. ig (élistribution.
p o
Zoo ~ N(0, 5—).
N©O, 5
Then, by Slutsky,

P (O — 0) 5 N0,

Conv.

2
-1
U2p7)
Prob. 2 on HW4

Part (a):
Ut = XtEt.

JE[X{] = JE[X?] by Jensen.

This is a m.d.s.

n

1

A D
t=1

By LLN and Slutsky, 137 X7 5

E[X?e?] = E[XZ]A% The last step follows

from independence. Choose the sequence

= E[X?]A% Then,

Then we can use the Martingale CLT, i.e.,
X
Zt 1 Mt€t d J\/ 1) PN
V/EIX7]A?
Zt 1 Xtet
S X R Bn

/80 d
f\/w A—>N’(0,1).

s, n]E[X 71
Use Slutsky to get the above. This is the

sought result,

VAEXEIn = 82 4,50 1)
Part (b): .
M= (e - xib) =
= % i[ﬁf +2eX1(Bo — Bn)+
t=1
+ X7 (Bo — Bn)’]-

First term —» A2 by LLN; the middle term
op(1) by LLN; for the last term we use
the result in (a) to note that (8, — f3n)?
is Op(n~') while 1X? 5 E[X?] by LLN.
The product of the two is 0,(1) as n — co.
Thus,
Az 5 A?

Note that
1 ST X7 S EX?
n

t=1
by LLN. Combine this with (a) and (b),
then by Slutsky,

Yo X2 s d
\/ﬁtwn—ﬁo)%mo, 1).

MLE
prvre = Xn and o = £ 30 (2 —p)?,
which are derived a follows if X;, ..., X,, are

iid and NM(u,o?):

Part (c):

L(X1,...,Xn) =
17 L (zi —p)*\ _
- i—1 V2mo? exp( 202 )=
n o 2
— (2702) "2 — 2 (T —p)
(2mo”) """ exp 552 ,

then take logs, then take FOC w.r.t. p and

o? to obtain the result.



