Distributions

A CDF F(t) is right continuous, i.e., $\lim_{\Delta \downarrow 0} F(t + \Delta) = F(t)$. CADLAG.

Transformation of distr.

If g is a 1–1, differentiable function, then Y = q(X) has pdf

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{\partial g^{-1}(y)}{\partial y} \right|.$$

In multivariate case, analogously,

$$f_Y(y_1, \dots, y_n) =$$

= $f_X(g_1^{-1}(y_1), \dots, g_n^{-1}(y_n))|J|.$

Student's theorem

Let X_1, \ldots, X_n be i.i.d. r.v. $\sim \mathcal{N}(\mu, \sigma^2)$ and $S_n^2 \equiv \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$. Then,

- 1. $\bar{X}_n = \mathcal{N}(\mu, \sigma^2/n)$;
- 2. \bar{X}_n and S_n^2 are independent;
- 3. $(n-1)S_n^2/\sigma^2 \sim \chi^2(n-1)$;
- 4. $T \equiv \frac{\bar{X}_n \mu}{S_n / \sqrt{n}} \sim t(n-1)$.

Gamma distribution

 $supp(X) = \mathbb{R}^+$

PDF: $f(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\beta x}$, CDF: omit.

MGF: $M(t) = (1 - t/\beta)^{-\alpha}$ for $t < \beta$

 $\mathbb{E}[X] = \alpha/\beta$, $\mathbb{V}ar[X] = \alpha/\beta^2$

Notes: $\Gamma(1) = 1$, $\Gamma(\alpha) = (\alpha - 1)\Gamma(\alpha - 1)$, if 0, $\mathbb{E}[X^4] = 3$, $\mathbb{E}[X^5] = 0$, $\mathbb{E}[X^6] = 105$ $1 < \alpha \in \mathbb{N}, \Gamma(\alpha) = (\alpha - 1)!, \Gamma(1/2) = \sqrt{\pi}.$

$\chi^2(r)$ distribution

 $supp(X) = \mathbb{R}^+$, PDF: omit.

MGF: $M(t) = (1 - 2t)^{-r/2}$ for t < 1/2

 $\mathbb{E}[X] = r, \, \mathbb{V}\mathrm{ar}[X] = 2r$

Notes: For a seq. $\{X_i \sim \chi^2(r_i)\}_{i=1}^n$ of indep. r.v., $\sum_{i=1}^{n} X_i \sim \chi^2(\sum_{i=1}^{n} r_i)$.

If $Z \sim \mathcal{N}(0,1)$, then $Z^2 \sim \chi^2(1)$

Poisson distribution

 $supp(X) = \{0, 1, 2, \dots\}$

PMF: $f(x) = \frac{\lambda^x \exp(-\lambda)}{x!}$, CMF: omit.

MGF: $M(t) = \exp(\lambda(e^t - 1))$

 $\mathbb{E}[X] = \lambda, \, \mathbb{V}\mathrm{ar}[X] = \lambda$

Binomial distribution

X = k successes in a sequence of n i.i.d.

PDF:
$$f(k) = \binom{n}{k} p^{k} (1-p)^{n-k}$$

MGF: $M(t) = (1 - p + p \exp(t))^n$

 $\mathbb{E}[X] = np$, $\mathbb{V}ar[X] = np(1-p)$

Bernoulli(p) distribution

$$X = \begin{cases} 1, & \text{w/ prob. } p \\ 0, & \text{w/ prob. } 1 - p \end{cases}$$

PMF: $f(x) = p^x (1-p)^{1-x}$

MGF: $M(t) = q + pe^t$

 $\mathbb{E}[X] = p, \mathbb{V}\operatorname{ar}[X] = p - p^2$

Normal distribution $\mathcal{N}(\mu, \sigma^2)$

PDF:
$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

CDF: $F(x) = \Phi((x - \mu)/\sigma)$

MGF: $M(t) = \exp(\mu t + \sigma^2 t^2/2)$

Notes: For a seq. normally distr. independent r.v. $\{X_i \stackrel{\text{indep.}}{\sim} \mathcal{N}(\mu_i, \sigma_i^2)\}_{i=1}^n$ $\sum_{i=1}^{n} X_i \sim \mathcal{N}(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2).$

If $X \sim \mathcal{N}(\mu, \Sigma)$, then the linear comb. $Ax + b \sim \mathcal{N}(A\mu + b, A\Sigma A').$

For $\mathcal{N}(0,1)$: $\mathbb{E}[X] = 0$, $\mathbb{E}[X^2] = 1$, $\mathbb{E}[X^3] = 1$

Uniform distribution U[a, b]

supp(X) = [a, b]

PDF: $f(x) = \frac{1}{h}$

CDF: $F(x) = \frac{x-a}{b-a}$

MGF:
$$M(t) = \begin{cases} \frac{\exp(tb) - \exp(ta)}{t(b-a)} & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$$

$\mathbb{E}[X] = (a+b)/2, \, \mathbb{V}ar[X] = (b-a)^2/12$ Student's t-distribution $t(\nu)$

Def:
$$t(\nu) = \frac{\mathcal{N}(0,1)}{\sqrt{\chi^2(n)/n}}, \ \nu = n-1$$

MGF: β , $\mathbb{E}[X] = 0$ if $\nu > 1$, $\mathbb{E}[X] = \text{un}$ Combinations: def. if $\nu \le 1$, $Var[X] = \nu/(\nu - 2)$ if $\nu > 2$, $Var[X] = \infty \text{ if } \nu < 2$

Exponential distr. $Exp(\lambda)$

 $\operatorname{supp}(X) = \mathbb{R}^+$

PDF: $f(x) = \lambda \exp(-\lambda x)$

CDF: $F(x) = 1 - \exp(-\lambda x)$

MGF: $\frac{\lambda}{\lambda-t}$, for $t<\lambda$

 $\mathbb{E}[X] = \lambda^{-1}, \, \mathbb{V}\mathrm{ar}[X] = \lambda^{-2}$

F distribution

For $U \sim \chi^2(r_1), \ V \sim \chi^2(r_2), \ W \equiv \frac{U/r_1}{V/r_2}$. Then $W \sim F(r_1, r_2)$.

PDF: omit., MGF: ∄

 $\mathbb{E}[X] = r_2/(r_1 - 2)$ for $r_2 > 2$,

 $\operatorname{Var}[X] = \frac{2r_2^2(r_1 + r_2 - 2)}{r_1(r_2 - 2)^2(r_2 - 4)} \text{ for } r_2 > 4$

$\mathbb{E}[\cdot]$, $\mathbb{P}[\cdot]$, M(t), etc.

LoUS: $\mathbb{E}[g(X)] = \int_{\Omega} g(x) dF_X(x)$

MGF: For a r.v. X, $M(t) \equiv \mathbb{E}[e^{Xt}]$ for -h < t < h where the expectation exists.

MGF generalize to joint r.v.'s X_1 , X_2 : $M_{X_1,X_2}(t_1,t_2) \equiv \mathbb{E}[e^{X_1t_1+X_2t_2}].$

Also, $M_{X_1}(t_1) = M_{X_1,X_2}(t_1,0)$.

For pos. integers m, $\mathbb{E}[X^m] = M^{(m)}(0)$.

A useful thm: $F_Y(s) = F_X(s), \forall s \Leftrightarrow$ $M_Y(t) = M_X(t), \ \forall t \in (-h, h).$

DeMorgan's Laws:

$$(C_1 \cup C_2)^C = C_1^C \cap C_2^C,$$

$$(C_1 \cap C_2)^C = C_1^C \cup C_2^C.$$

Boole's inequality:

$$\mathbb{P}\left(\bigcup_{i=1}^{n} C_i\right) \le \sum_{i=1}^{n} \mathbb{P}\left(C_i\right)$$

Bonferroni's inequality:

$$\mathbb{P}\left(C_{1}\cap C_{2}\right)\geq \mathbb{P}\left(C_{1}\right)+\mathbb{P}\left(C_{2}\right)-1$$

Permutations:

$$\mathbb{P}_k^n = \frac{n!}{(n-k)!}$$

$$C_k^n = \binom{n}{k} = \frac{n!}{k! (n-k)!}$$

Inequalities

Markov's inequality: If $\mathbb{E}[|X|] < \infty$ and a > 0, then

$$\mathbb{P}(|X| > a) \le \frac{\mathbb{E}[|X|]}{a}$$

Chebyshev's inequality:

$$\mathbb{P}(|X - \mu_X| > b) \le \frac{\sigma_X^2}{b^2}$$

Jenses's inequality: For a convex ϕ ,

$$\phi(\mathbb{E}[X]) \le \mathbb{E}[\phi(X)]$$

Indep. & cond.

Def. of indep. events:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Def. of $\mathbb{E}[\cdot|\cdot|]$: For r.v.'s X, Y, $\mathbb{E}[Y|X] \equiv \arg\min \mathbb{E}[(Y - \varphi(X))^2]$

Law of Total Probability:

$$\mathbb{P}(A) = \sum_{i=1}^n \mathbb{P}(A|C_i)\mathbb{P}(C_i)$$
 Law of Total Expectation:

$$\mathbb{E}(X) = \sum_{i=1}^{\bar{n}} \mathbb{E}[X|C_i]\mathbb{P}(C_i)$$

Bayes' rule:

$$\mathbb{P}(A|B) = \mathbb{P}(B|A) \frac{\mathbb{P}(B)}{\mathbb{P}(A)}$$

Law of Iterated Expectations:

$$\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$$

Take-out-what's-known:

$$\mathbb{E}[h(X)Y|X] = h(X)\mathbb{E}[Y|X]$$

Convergences

Monotone Conv. Thm.

For a seq. meas., non-neg. func. $\{f_n\}_n$ on $(\Omega, \mathcal{F}, \mathbb{P})$, s.t. $f_n < f_{n+1}$ and $f_n \to f$, $\lim_{n\to\infty} \mathbb{E}[f_n] = \mathbb{E}[f].$

Dominated Conv. Thm.

For a seq. meas. func. $\{f_n\}_n$ on $(\Omega, \mathcal{F}, \mathbb{P})$, suppose p-w conv. a.s. to a func. f, and $\exists a > 0$, and

 $|f_n(x)| \leq |g(x)| \ \forall x, n, \text{ and } \mathbb{E}[|g|] < \infty.$

Then $\mathbb{E}[|f|] < \infty$, and

$$\lim_{n\to\infty} \mathbb{E}[f_n] = \mathbb{E}[f].$$

Central limit theorem:

If X_i is an i.i.d. seq., $\sqrt{n}(\bar{X}_n - \mathbb{E}[X]) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$

Delta method:

If $\sqrt{n}(X_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2)$ and $g(\cdot)$ is continuously differentiable at θ , then $\sqrt{n}(q(X_n) - q(\theta)) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2[q'(\theta)]^2).$

Convergence in \mathbb{P} , L^r , d, a.s.

$$\stackrel{a.s.}{\to}: P\left(\left\{w: X_n\left(w\right) \to X\left(w\right)\right\}\right) = 1$$

$$\stackrel{L^r}{\to}: E\left[|X_n - X|^r\right] \to 0$$

$$\stackrel{\mathbb{P}}{\to}: \text{If } \forall \epsilon > 0, \text{ we have}$$

$$\lim_{n \to \infty} P\left[|X_n - X| \ge \epsilon\right] = 0 \equiv$$

$$\equiv \lim_{n \to \infty} P\left[(X_n - X) < \epsilon\right] = 1.$$

 $\stackrel{d}{\rightarrow}$: For $\{X_n\}$ and X, let the cdfs be F_{X_n} and F_X . Let $C(F_X)$ denote the set of xwhere F_X is continuous. $X_n \stackrel{d}{\to} X$ if

$$\lim_{n \to \infty} F_{X_n}(x) = \lim_{n \to \infty} P(X_n \in (-\infty, x]) =$$
$$= F_X(x), \forall x \in C(F_X).$$

Bounded in prob.: if $\forall \epsilon > 0, \exists B_{\epsilon} > 0$ s.t. $\forall n > N_{\epsilon} \in \mathbb{Z}, \ \mathbb{P}[|X_n| < B_{\epsilon}] > 1 - \epsilon,$ then X_n is bound. in prob.

About $\mathcal{O}_n(1)$, $o_n(1)$, etc.

- If $X_n \stackrel{d}{\to} X$, then $X_n + o_n(1) \stackrel{d}{\to} X$
- $(a + o_n(1)) + (b + o_n(1))X_n \stackrel{d}{\to} a + bX$
- $\mathcal{O}_{n}(1) + \mathcal{O}_{n}(1) = \mathcal{O}_{n}(1)$
- $\bullet \, \mathcal{O}_n \, (1) \cdot \mathcal{O}_n \, (1) = \mathcal{O}_n \, (1)$
- $\mathcal{O}_{p}(1) \cdot o_{p}(1) = o_{p}(1)$
- $\bullet o_n(1) + o_n(1) = o_n(1)$
- $o_p(1) \cdot o_p(1) = o_p(1)$
- $\bullet (X + o_n(1)) + (Y + o_n(1)) =$ $= X + Y + o_n(1)$
- $(X + o_p(1)) \cdot (Y + o_p(1)) =$ $= X \cdot Y + o_n(1)$
- $q(a + o_n(1)) = q(a) + o_n(1)$
- For r.v. $X, X \cdot o_n(1) = o_n(1)$.

 $\stackrel{d}{\rightarrow}$ does **not** imply $\stackrel{L^s}{\rightarrow}$.

$\overset{a.s.}{\rightarrow} \longrightarrow \overset{\mathbb{P}}{\rightarrow} \longrightarrow \overset{d}{\rightarrow}$

 $X_n \stackrel{d}{\to} X$ and $Y_n \stackrel{d}{\to} Y$ (marginal conv.) does **not** imply $(X_n, Y_n) \stackrel{d}{\rightarrow} (X, Y)$ (joint conv.).

Cont. Mapp. Thm and Slutsky:

If $X_n \stackrel{d}{\to} X$ and $g(\cdot)$ is cont., then $g(X_n) \stackrel{d}{\to}$ q(X). If $A_n \stackrel{\mathbb{P}}{\to} a$ and $B_n \stackrel{\mathbb{P}}{\to} b$ (a, b) are const.), then $A_n X_n + B_n \stackrel{d}{\rightarrow} aX + b$.

Identification

Def: h^* is identified within $H \Leftrightarrow \forall h \neq h$ $h^* \in H, F_{Y,X}(\cdot; h) \neq F_{Y,X}(\cdot; h^*).$

Linear regressions

Geometric intuition

$$\mathbb{P}_n \equiv \mathbb{X}_n(\mathbb{X}'_n \mathbb{X}_n)^{-1} \mathbb{X}'_n, \ \mathbb{M}_n \equiv I_n - \mathbb{P}_n$$

$$\mathbb{P}_n \mathbb{P}_n = \mathbb{P}_n, \ \mathbb{M}_n \mathbb{M}_n = \mathbb{M}_n, \ \mathbb{P}_n \mathbb{X}_n = \mathbb{X}_n$$

$$\mathbb{P}_n \mathbb{M}_n = 0, \ \mathbb{P}_n \mathbb{M}_n = 0, \ \mathbb{M}_n \mathbb{X}_n = 0$$
Also, $\|a\|^2 = \|\mathbb{P}_n a\|^2 + \|\mathbb{M}_n a\|^2$.

OLS regression

Estimator:

$$\hat{\beta}_n = (\mathbb{X}'_n \mathbb{X}_n)^{-1} \mathbb{X}'_n \mathbb{Y}_n =$$

$$= \left(\frac{1}{n} \sum_{i=1}^n X_i X_i\right)^{-1} \frac{1}{n} \sum_{i=1}^n X_i Y_i$$

$$\mathbb{P}_n \mathbb{Y}_n = \mathbb{X}_n \hat{\beta}_n$$

OLS assumptions:

- 1. $\{Y_i, X_i\}_{i=1}^n$ is i.i.d.;
- 2. $\mathbb{E}[Y^2] < \infty$;
- 3. $\mathbb{E}[XX'] < \infty$ and invertible,
- 4. $\mathbb{E}[\|X\|^2U^2] < \infty$

 β_n is a consistent estimator if OLS 1–3 hold.

Asympt. norm.: If OLS 1, 3, 4 hold, $\sqrt{n}(\hat{\beta}_n - \beta_0) \stackrel{d}{\rightarrow}$

$$\mathcal{N}(0, (\mathbb{E}[XX'])^{-1}\mathbb{E}[XX'U^2](\mathbb{E}[XX'])^{-1})$$

Homosk. If $\mathbb{E}[U^2|X] = \sigma^2$ w.p. 1 over X .

OLS w/ intercept

$$(\alpha, \beta) = \arg\min_{a,b} \sum_{i=1}^{n} (Y_i - a - Z_i'b)^2$$
$$\hat{\beta}_n = \frac{\sum_{i=1}^{n} (Y_i - \bar{Y}_n)(Z_i - \bar{Z}_n)}{\sum_{i=1}^{n} (Z_i - \bar{Z}_n)^2}.$$

Assume $\mathbb{E}[Y|X] = X'\gamma_0$, i.e., linear. By **IV regression** LoIE, $\mathbb{E}[(Y - X'\gamma_0)X] = \mathbb{E}[YX] - \mathbb{E}[YX] =$ 0, which implies that $\mathbb{E}[(Y - X'\gamma_0)X] =$ $\mathbb{E}\left[\left(Y-X'\beta_0\right)X\right]$ or that $\beta_0=\gamma_0$, whenever correlation may occur $\mathbb{E}[XX']$ is full rank.

Thus, the OLS estimand β_0 corresponds to the cond. exp. param. in $E[Y|X] = X'\beta_0$.

Best linear predictor

If $Y \in \mathbb{R}$, $X \in \mathbb{R}$, $\mathbb{E}[Y^2] < \infty$, and $\mathbb{E}[XX']$ is full rank, then

$$\beta_0 \equiv \arg\min_{b \in \mathbb{R}^d} E\left[\left(Y - X'b \right)^2 \right] =$$

$$= \arg\min_{b \in \mathbb{R}^d} E\left[\left(E\left[Y | X \right] - X'b \right)^2 \right].$$

Meas. of fit: $R^2 \equiv 1 - \frac{RSS}{TSS}$ where,

$$RSS \equiv \frac{1}{n} \sum_{i=1}^{n} ((Y_i - \bar{Y}_n) - (X_i - \bar{X}_n)' \hat{\beta}_n)^2$$

$$TSS \equiv \frac{1}{n} \sum_{i=1}^{n} (Y_i - \bar{Y}_n)^2$$

The Wald test: Suppose for the single linear restriction we choose a $r \in \mathbb{R}^d$ and $b \in \mathbb{R}$ and we are interested in testing: $H_0: r'\beta_0 = b \text{ versus } H_1: r'\beta_0 \neq b.$ A special case would be setting r to a vector of zeros with one one and setting b = 0, which would test a single regressor is equal to zero.

The Wald test is set up so we reject for large

$$\phi_n \equiv \mathbb{1}\left(\frac{1}{\sqrt{r'\hat{\Sigma}_n r}} \left| \sqrt{n}(r'\hat{\beta}_n - b) \right| > c_{1-\alpha/2}\right)$$

Thm Let the OLS-2 hold, $\sigma^2 \equiv r' \Sigma_0 r, Z \sim$ $\mathcal{N}(0,1)$, and

$$\Sigma_0 \equiv \mathbb{E} \left[X X' \right]^{-1} \mathbb{E} \left[X X' U^2 \right] \mathbb{E} \left[X X' \right]^{-1}.$$
If $r' \beta_0 = b$, then it follows:

$$\left| \sqrt{n} \left\{ r' \hat{\beta}_n - b \right\} \right| \stackrel{d}{\to} \left| \sigma_0 Z \right| \sim \left| \mathcal{N} \left(0, r' \Sigma_0 r \right) \right|$$

Thm If OLS-2 holds, $\hat{\Sigma}_n \stackrel{p}{\to} \Sigma_0$, $\sigma_0 > 0$, and $r'\beta_0 = b$, then (where $c_{1-\alpha}$ is the $1-\alpha$ quantile of the standard normal random

$$\lim_{n \to \infty} \mathbb{P}\left(\frac{\sqrt{n}}{\sqrt{r'\hat{\Sigma}_n r}} \left| r'\hat{\beta}_n - b \right| > c_{1-\alpha/2}\right) = \alpha.$$

IVs are used when X is correlated with ϵ , in which case OLS results will be biased. Such

- 1. when changes in Y change the value of at least one of the covariates ("reverse" causation);
- 2. when there are omitted variables that affect both Y and X; or
- 3. when X is subject to non-random measurement error.

X is endogenous if any of above cases apply. If an instrument is available, consistent estimates may be obtained. An instrument is a variable that does not itself belong in the explanatory equation but is correlated with the endogenous explanatory variables, conditional on the value of other covariates.

Estimand: β_0 solves

$$\mathbb{E}[(Y - X'\beta_0)Z] = 0$$

Estimator:

$$\hat{\beta}_n = \arg\min_{b \in \mathbb{R}^{d_x}} \left\| \frac{1}{n} \sum_{i=1}^n (Y_i - X_i'b) Z_i \right\|^2$$
$$= (\mathbb{X}_n' \mathbb{Z}_n \hat{\Omega}_n \mathbb{Z}_n' \mathbb{X}_n')^{-1} \mathbb{X}_n' \mathbb{Z}_n \hat{\Omega}_n \mathbb{Z}_n' \mathbb{Y}_n$$

Consistency: If $\{Y_i \in \mathbb{R}, X_i \in \mathbb{R}^{d_x}, Z_i \in \mathbb{R}^{d_x},$ \mathbb{R}^{d_z} $_{i=1}^n$ is i.i.d. and holds for the moment condition for some β_0 ; $\hat{\Omega}_n \to \Omega$ for some Ω , rank($\mathbb{E}[XZ']$) = d_x ; and $\mathbb{E}[\|XZ'\|] < \infty$, then $\hat{\beta}_n$ is a consistent estimator of β_0 .

Asympt. norm.: Under same assumptions as for consistency, and $\mathbb{E}[ZZ'U^2]$ < ∞ , then the limit distr. of $\sqrt{n}(\hat{\beta}_n - \beta_0)$ is $\mathcal{N}(0, K\mathbb{E}[XZ']\Omega\mathbb{E}[ZZ'U^2]\Omega\mathbb{E}[ZX']K)$ where $K = (\mathbb{E}[XZ']\Omega\mathbb{E}[ZX'])^{-1}$.

2SLS and **3SLS**/Choice of Ω :

Choosing $\hat{\Omega}_n = \left(\frac{1}{n}\sum_{i=1}^n\sum_{j=1}^nZ_iZ_i'\right)^{-1}$ is **2SLS**, equiv. with the following algorithm:

- 1. Regress \mathbb{X}_n on \mathbb{Z}_n and fit $\hat{\mathbb{X}}_n$.
- 2. Regress \mathbb{Y}_n on $\hat{\mathbb{X}}_n$ to estimate β_0 .

We can see the equivalence from plugging in the 2SLS $\hat{\Omega}_n$ into the $\hat{\beta}_n$ equation:

$$\hat{\beta}_n = [\mathbb{X}'_n \mathbb{Z}_n (\mathbb{Z}'_n \mathbb{Z}_n)^{-1} \mathbb{Z}'_n \mathbb{X}_n]^{-1}$$

$$\mathbb{X}'_n \mathbb{Z}_n (\mathbb{Z}'_n \mathbb{Z}_n)^{-1} \mathbb{Z}'_n \mathbb{Y}_n =$$

$$= [(\mathbb{P}_n^Z \mathbb{X}_n)' (\mathbb{P}_n^Z \mathbb{X}_n)]^{-1} (\mathbb{P}_n^Z \mathbb{X}_n)' \mathbb{Y}_n =$$

$$= (\hat{X} \hat{X}'_n \hat{X} \hat{X}_n)^{-1} \hat{X} \hat{X}'_n \mathbb{Y}_n.$$

Remember: $\mathbb{P}_n^Z \equiv \mathbb{Z}_n \left(\mathbb{Z}_n' \mathbb{Z}_n \right)^{-1} \mathbb{Z}_n'$.

3SLS corresponds to the following:

- 1. Obtain $\tilde{\beta}_n$ that is consistent for β_0 .
- 2. Create $\tilde{U}_i = (Y_i X_i'\tilde{\beta}_n)$ and set $\hat{\Omega}_n = \left(\frac{1}{n} \sum_{i=1}^n \sum_{i=1}^n Z_i Z_i' \tilde{U}_i^2\right).$
- 3. Solve $\hat{\beta}_n =$ $= [\mathbb{X}_n' \mathbb{Z}_n \hat{\Omega}_n \mathbb{Z}_n' \mathbb{X}_n]^{-1} \mathbb{X}_n' \mathbb{Z}_n \hat{\Omega}_n \mathbb{Z}_n' \mathbb{Y}_n$ with $\hat{\Omega}_n$.

LATE – Local aver. treat. effect

 $Y \in \mathbb{R}$, $D \in \{0,1\}$, and $Z \in \{0,1\}$ such that we observe: Y = Y(0) + D(Y(1) - Y(0)), D(1) if Z = 1, and D(0) if Z = 0; i.e., Z affects the treatment decision. Similarly we observe: D = D(0) + Z(D(1) - D(0)).

We make two LATE assumptions: LATE-1

- (a) $(Y(1), Y(0), D(1), D(0)) \perp Z$;
- (b) $\mathbb{P}(D(1) \neq D(0)) > 0$. LATE-2:
- (a) monotonicity: $D(1) \ge D(0)$ a.s. no defiers.

We can obtain the LATE estimator using 2SLS to estimate the β that we assume solves the moment restrictions:

$$\mathbb{E}[(Y - \beta_{00} - D\beta_{01}) \begin{bmatrix} 1 \\ Z \end{bmatrix}] = 0$$

If we solved this out, we would find that:

$$\beta_{01} = \frac{\mathbb{C}\text{ov}[Y, Z]}{\mathbb{C}\text{ov}[D, Z]}.$$

By Law of total expectations,

$$\beta_{01} = \frac{\mathbb{E}[Y|Z=1] - \mathbb{E}[Y|Z=0]}{\mathbb{E}[D|Z=1] - \mathbb{E}[D|Z=0]},$$
or using I ATE 1 that we have:

or using LATE-1 that we have:

$$\beta_{01} = \frac{\mathbb{E}\left[(Y(1) - Y(0)) (D(1) - D(0)) \right]}{\mathbb{E}\left[D(1) - D(0) \right]}$$

Under LATE-2 we then have:

$$\beta_{01} = E\left[Y\left(1\right) - Y\left(0\right) | D\left(1\right) - D\left(0\right) = 1\right].$$
 This β_{01} is the TE on the compliers/LATE.

Panel data

Clustered data

Thm Assuming

- 1. $\{Y_i, X_i\}_{i=1}^n$ is i.i.d.;
- $2. \mathbb{E}\left[\sum_{t=1}^{T} X_{it} U_{it}\right] = 0;$
- 3. $\mathbb{E}[X_i'X_i]$ is finite and invertible; and,
- 4. $\sum_{t=1}^{T} \mathbb{E} \left[\|X_{it}\|^2 U_{it}^2 \right] < \infty;$

$$\sqrt{n}(\hat{\beta}_n - \beta_0) \stackrel{d}{\to}$$

$$\mathcal{N}(0, (S\mathbb{E}[(\sum_{t=1}^{T} X_{it} U_{it})(\sum_{t=1}^{T} X_{it} U_{it})']S),$$
where $S = \mathbb{E}[X_i' X_i])^{-1}$.

We can then estimate the asympt. variance of $\hat{\beta}_n$ with the sample analogue:

$$\hat{S} \frac{1}{n} \sum_{i=1}^{n} \left((\sum_{t=1}^{T} X_{it} \hat{U}_{it}) (\sum_{t=1}^{T} X_{it} \hat{U}_{it})' \right) \hat{S}$$
where $\hat{U}_{it} \equiv Y_{it} - X'_{it} \hat{\beta}_n$ and $\hat{S} = \left(\frac{1}{n} \sum_{i=1}^{n} X'_{i} X_{i} \right)^{-1}$.
Split the middle term into a "standard

term" and a 2nd corr.-within-cluster term:

$$\frac{1}{n} \sum_{i=1}^{n} \left(\left(\sum_{t=1}^{T} X_{it} \hat{U}_{it} \right) \left(\sum_{t=1}^{T} X_{it} \hat{U}_{it} \right)' \right) = \\
= \frac{1}{n} \sum_{i=1}^{n} \sum_{t=1}^{T} X_{it} X'_{it} \hat{U}_{it}^{2} + \\
+ \frac{2}{n} \sum_{i=1}^{n} \sum_{t=1}^{T-1} \sum_{t' > t} X_{it} X'_{it'} \hat{U}_{it} \hat{U}_{it'}.$$

Random Effects

Assume U_{it} contains an individual error A_i and an individual-time error V_{it} , s.t.:

$$Y_{it} = X'_{it}\beta_0 + \underbrace{A_i + V_{it}}_{U_{it}}$$

In an RE model, we assume that X_{it} is exogenous, i.e. uncorrelated with (A_i, V_{it}) as well as that A_i and V_{it} are i.i.d.. In FE we are concerned with corr. b/w A_i and X_{it} .

RE-1:

- (i) $\{Y_i, X_i\}_{i=1}^n$ is i.i.d. and satisfies the RE model:
- (ii) $\mathbb{E}[A_i|X_i] = 0$ and $\mathbb{E}[V_i|X_i, A_i] = 0$;
- (iii) $\mathbb{E}[A_i^2|X_i] = \sigma_A^2$ and $\mathbb{E}[V_iV_i'|X_i, A_i] =$

RE-1 (ii) implies
$$E\left[\left(Y_{it} - X_{it}'\beta_0\right)X_{it}\right] = 0, \forall 1 \leq t \leq T \land 1 \leq \tilde{t} \leq T \implies E\left[X_i'\Omega\left(Y_i - X_i\beta_0\right)\right] = 0$$

RE-2:

- (i) $\hat{\Omega}_n \stackrel{p}{\to} \Omega \wedge E[X_i'\Omega X_i]$ is full rank;
- (ii) $E[\|X_i\|^2] < \infty$.

Given RE-2 (i),

$$\hat{\beta}_n^{\text{re}} = (\frac{1}{n} \sum_{i=1}^n X_i' \hat{\Omega}_n X_i)^{-1} (\frac{1}{n} \sum_{i=1}^n X_i' \hat{\Omega}_n Y_i).$$

Asympt. norm.: Let $\Sigma \equiv \mathbb{E}[U_iU_i'|X_i]$ and RE-1 and RE-2 hold. Then: $\sqrt{n}\left(\hat{\beta}_n^{\rm re} - \beta_0\right) \stackrel{d}{\to}$

$$\mathcal{N}\left(0, S\mathbb{E}\left[X_i'\Omega\Sigma\Omega X_i\right]S\right)$$
 where $S \equiv \left(\mathbb{E}\left[X_i'\Omega X_i\right]\right)^{-1}$

From the asympt. var. for the FE estimator, we can see that, as in IV, there is an FE-2 efficient $\Omega = \Sigma^{-1} \equiv (E[U_iU_i'|X_i])^{-1}$.

We have the following procedure for RE:

- 1. Obtain a $\tilde{\beta}_n$ that is consistent for β_0 - for instance by solving the sample analogue of the moment conditions with $\hat{\Omega}_n = I_T$.
- 2. Employing $\tilde{\beta}_n$ create residuals $\tilde{U}_{it} =$ $(Y_{it} - X'_{it}\tilde{\beta}_n)$ and motivated by the

structure of $E[U_iU_i'|X_i]$ let:

$$\hat{\alpha}_A^2 \equiv \frac{1}{nT(T-1)/2} \cdot \cdot \sum_{i=1}^n \sum_{t=1}^{T-1} \sum_{\tilde{t}=t+1}^T \tilde{U}_{it} \tilde{U}_{i\tilde{t}}$$

$$\hat{\alpha}_B^2 \equiv \frac{1}{nT} \sum_{i=1}^n \sum_{t=1}^T \left(\tilde{U}_{it} \right)^2 - \hat{\sigma}_A^2$$

3. Employing $\hat{\sigma}_A^2$ and $\hat{\sigma}_B^2$, compute $\hat{\beta}_n^{\text{re}}$ by solving the $\hat{\beta}_n^{\rm re}$ estimation problem with $\hat{\Omega}_n$ set to equal $\hat{\sigma}_A^2 + \hat{\sigma}_B^2$ on the diagonal and $\hat{\sigma}_{A}^{2}$ o/w.

Fixed Effects

In FE model, we maintain the same model but change our assumption on the residual U_{it} :

$$Y_{it} = X'_{it}\beta_0 + \underbrace{A_i + V_{it}}_{U_{it}}$$

where U_{it} contains an individual specific A_i , and an individual and time specific V_{it} , and: FE-1

- (i) $\{Y_i, X_i\}_{i=1}^n$ is i.i.d. from FE model;
- (ii) $\mathbb{E}\left[V_i|X_i,A_i\right]=0$

We no longer require that $\mathbb{E}[A_i|X_i]=0$.

FE as Demeaning We have: $\dot{Y}_{it} \equiv Y_{it}$ – $\overline{Y} = \dot{X}'_{it}\beta_0 + \dot{V}_{it}$ and

$$\mathbb{E}[\dot{V}_{it}\dot{X}_{it}] = \mathbb{E}[(V_{it} - \overline{V}_i)(X_{it} - \dot{X}_i)] =$$

$$= \mathbb{E}[\mathbb{E}[(V_{it} - \overline{V}_i)|X_i](X_{it} - \dot{X}_i)] = 0.$$

Define FE regressor as:

$$\hat{\beta}_n^{\text{fe}} \equiv \arg\min_{b \in \mathbb{R}^d} \frac{1}{nT} \sum_{i=1}^n \sum_{t=1}^T \left(\dot{Y}_{it} - \dot{X}'_{it} b \right)^2.$$

Thus this becomes the usual OLS problem.

(i) $\sum_{t=1}^{T} \mathbb{E} \left| \dot{X}_{it} \dot{X}'_{it} \right|$ is full rank;

(ii)
$$\mathbb{E}\left[\left(\sum_{t=1}^{T} \dot{X}_{it} \dot{V}_{it}\right)\left(\sum_{t=1}^{T} \dot{X}_{it} \dot{V}_{it}\right)'\right] < \infty$$

Asympt. norm.: Given FE-1 and FE-2, then:

$$\sqrt{n} \left(\hat{\beta}_n^{\text{fe}} - \beta_0 \right) \stackrel{d}{\to}$$

$$\mathcal{N} \left(0, B \mathbb{E} \left[\left(\sum_{i=1}^{T} \dot{X}_{it} \dot{V}_{it} \right) \left(\sum_{i=1}^{T} \dot{X}_{it} \dot{V}_{it} \right)' \right] B \right)$$

where $B \equiv (\sum_{t=1}^T \mathbb{E} \left[\dot{X}_{it} \dot{X}'_{it} \right])^{-1}$. We can A UMP test exists when the null and alter- Also, suppose there is a consistent estima- **A LLN:** If $\{X_t\}_{t \in \mathbb{Z}}$ is weak. stat., and estimate this variance with sample ana- native hypothesis are simple. logues.

Hypothesis testing

Basic concepts: A test φ is a procedure to choose between two hypotheses H_0 and H_1 . $\{H_0, H_1\}$ is a partition.

$$H_0: \theta \in \Theta_0 \subset \Theta \text{ v.s. } H_1: \theta \in \Theta_1 \subset \Theta.$$

or,
$$H_0: \mathbb{P} \in \mathbf{P}_0$$
 v.s. $H_1: \mathbb{P} \in \mathbf{P}_1$

The **critical region** C_{φ} characterizes φ . Given data X, φ rejects H_0 if $X \in C_{\varphi}$.

Type-1 error is when H_0 is rejected but true. The prob. of type-1 error is

$$P_{\theta}(\text{test }\varphi \text{ rejects }H_0) = P_{\theta}(C_{\varphi}), \ \theta \in \Theta_0$$

Type-2 error is when H_0 is accepted and false.

$$P_{\theta}(\text{test } \varphi \text{ rejects } H_1) = P_{\theta}(C'_{\varphi}), \ \theta \in \Theta_1.$$

Size of a test is the highest prob. of type-1 error over all $\theta \in \Theta_0$. That is,

Size of test
$$\varphi = \sup_{\theta \in \Theta_0} P_{\theta}(C_{\varphi}) = \sup_{\mathbf{P}_0} \mathbb{E}_{\mathbb{P}_0}[\phi_n]$$

Test φ has sign. lvl α if the size of φ is $< \alpha$. A test has several sign. lvl., i.e., $\alpha \in [\text{size of } \varphi, 1].$

The power of a test is the highest prob. of φ rejecting H_0 when H_1 is true.

Power of
$$\varphi = P_{\theta}(C_{\varphi})$$
, for any $\theta \in \Theta_1$.

A p-value is "the probability under the null hypothesis of observing a more extreme outcome than the data X".

p-value
$$\equiv \inf \{ \alpha \in [0,1] : X \in C_{\varphi}^{\alpha} \}.$$

UMP Test and N-P Lemma

The power function of φ is

$$K_{\varphi}(\theta) \equiv P_{\theta}(\varphi \text{ rejects } H_0).$$

Uniformly Most Powerful: A test φ is UMP with sign. lvl α if

$$\sup_{\theta \in \Theta_0} K_{\varphi}(\theta) \le \alpha, \text{ and }$$

 $K_{\varphi}(\theta) \geq K_{\varphi_*}(\theta)$ for any $\theta \in \Theta_1$, where $\varphi_* \neq \varphi$ has sign. lvl α .

N-P Lemma: Let $X = (X_1, \ldots, X_n)$ have pdf $f(x;\theta)$ and define the (simple) hypotheses

$$H_0: \theta = \theta_0 \text{ v.s. } H_1: \theta = \theta_1.$$

Consider a test φ with critical region

$$C_{\varphi} \equiv \{x \in \Omega_{X,n} : \frac{f(x; \theta_1)}{f(x; \theta_0)} > k_{\alpha}\},$$

where k_{α} is chosen so that the size of φ is α . Then:

- φ is a UMP test with sign. lvl α ;
- any UMP test with sign. lvl α must for any h, t_1 , and n. be a size- α test;
- if $f(x;\theta_1) \neq k_{\alpha} f(x;\theta_0)$ a.s., then all level- α UMP tests are identical a.s.

Different tests

Likelihood ratio test: A LRT has critical region

$$C_{\varphi} = \{x = X : \lambda(x) \equiv \frac{\max_{\theta \in \Theta} f(x; \theta)}{\max_{\theta \in \Theta_0} f(x; \theta)} > k_{\alpha} \},$$

where the significance level of the test is $\alpha = \max_{\theta \in \Theta_0} P_{\theta}(\lambda(x) > k_{\alpha}).$

A thm: If certain ML regularity conditions hold, then, under Θ_0 ,

$$LRT_n = 2 \ln \left(\frac{\max_{\theta \in \Theta} f(x; \theta)}{\max_{\theta \in \Theta_0} f(x; \theta)} \right) \stackrel{d}{\to}$$

$$\stackrel{d}{\to} \chi^2(r)$$
, as $n \to \infty$,

where $\Theta_0 = \{\theta \in \Theta : h(\theta) = 0_r\}$, and r is # restr. imposed on the parameters by Θ_0 .

Wald test: Take a function $h: \mathbb{R}^k \to \mathbb{R}^r$, where k is # parameters and r # restr.

$$H_0: h(\theta) = 0_r$$
, v.s. $H_1: h(\theta) \neq 0_r$.
Suppose $\hat{\theta}_n$ satisfies

$$\sqrt{n}(\hat{\theta}_n - \theta) \stackrel{d}{\to} \mathcal{N}(0, V(\theta)) \text{ as } n \to \infty.$$

tor $\hat{V}(\hat{\theta}_n) \stackrel{p}{\to} V(\theta)$. Then,

$$W_n \equiv$$

$$\sqrt{n}(h(\hat{\theta}_n))' \left[H(\hat{\theta}_n) \hat{V}_n(\hat{\theta}_n) H'(\hat{\theta}_n) \right]^{-1}$$
$$\sqrt{n}h(\hat{\theta}_n) \stackrel{d}{\to} \chi^2(r).$$

H denotes Jacobian. The Wald test has $C_{\alpha} = \{X_n \in \Omega_{X,n} : W_n(X_n) > k_{\alpha}\},\$ where k_{α} is the α quantile of $\chi^{2}(r)$.

Time series

Strict stationarity: X_t is strict. stat. if $(X_{t_1+h}, \dots, X_{t_n+h}) \stackrel{d}{=} (X_{t_1}, \dots, X_{t_n})$

Autocov. func.: If X_t has $\mathbb{E}[X_t^2] < \infty$,

 $K_X(t,s) \equiv \mathbb{E}\left[(X_t - \mathbb{E}[X_t])(X_s - \mathbb{E}[X_s]) \right].$ Also.

$$\Gamma_X(h) \equiv K_X(h,0), \ \forall h \in \mathbb{Z}.$$

Also, $\Gamma_X(-h) = \Gamma_X(h)$.

Weakly stationarity: A process X_t is weak. stat. if

- (a) $\mathbb{E}[X_t^2] < \infty$ for any t;
- (b) $\mathbb{E}[X_t] = c \in \mathbb{R}$ for any t;
- (c) $K_X(t,s) = K_X(t+h,s+h) =$ $=\Gamma_X(t-s)$ for any $t,s,h\in\mathbb{Z}$.

A strict. stat. X_t with \mathbb{V} ar $[X_t] < \infty$ is also weakly stationary.

A weak. stat. Gaussian process is also strict. stat.

Auto-corr. func: $\rho_X(h)$ of X_t is $\rho_X(h) \equiv \frac{\Gamma_X(h)}{\Gamma_X(0)}, \quad \forall h \in \mathbb{Z}.$

IID Noise: X_t is IID noise if obs. are i.i.d., $\mathbb{E}[X_t] = 0$, $\mathbb{E}[X_t^2] = \sigma^2 < \infty$, and if

$$K_X(t,s) = \begin{cases} \sigma^2, & \text{if } s = t, \\ 0, & \text{if } s \neq t. \end{cases}$$

IID noise is stationary

White noise: A seq. X_t is WN if the autocorr. is zero, $\mathbb{E}[X_t] = 0$, and $\mathbb{E}[X_t^2] =$ $\sigma^2 < \infty$.

IID noise is white noise.

 $\Gamma_X(h) \to 0$ as $h \to 0$, then, as $n \to \infty$, $\operatorname{Var}[\bar{X}_n] = \mathbb{E}\left[\left(\bar{X}_n - \mathbb{E}[X_t]\right)^2\right] \to 0.$ Also, if $\sum_{h=-\infty}^{\infty} |\Gamma_X(h)| < \infty$, then $n \mathbb{V}\mathrm{ar}[\bar{X}_n] \to \sum_{h=-\infty}^{\infty} \Gamma_X(h) \text{ as } n \to \infty.$

ARMA processes

Definition: A rand. seq. $\{X_t\}_{t\in\mathbb{Z}}$ is an ARMA(p,q) if it is stationary and

$$X_t + \sum_{k=1}^{p} \phi_k X_{t-k} = u_t + \sum_{i=1}^{q} \theta_i u_{t-i},$$

where $u_i \sim WN(0, \sigma^2)$, and $\phi_k, \theta_i \in \mathbb{R}$. An alternative representation is

$$\Phi(L)X_t = \theta(L)u_t.$$

Causal repr. of ARMA is an abs. sum. seq. $\{\varphi_k\}_{k=0}^{\infty}$ s.t.

$$X_t = \sum_{k=0}^{\infty} \varphi_k u_{t-k} = \varphi(L) u_t, \ \forall t.$$

Theorem 8: An ARMA process is causal iff the AR part $\phi(L)$ has no roots |x| < 1. And $\theta(L)$ has no common roots with $\phi(L)$.

Find causal repr. of an ARMA(p,q): For $\phi(L)X_t = \theta(L)\epsilon_t$:

- 1. Find roots λ_i of the characteristic polynomial, i.e., $\phi(z) = 0$.
- 2. Then define caus. repr. $\psi(L)$ by

$$X_t = \psi(L)\epsilon_t \Rightarrow$$

 $\Rightarrow \theta(L) = \phi(L)\psi(L)$

- 3. By matching of coefficients, identify ψ_i from the coefficient of L^i .
- 4. Use that $\psi_i = \sum_{j=1}^p c_j \lambda_j^{-i}$.

Auto-cov. function of ARMA:

Y-W formulas: An ARMA(p,q) $X_t =$ $\varphi(L)u_t$ has $\Gamma_X(h)$ given by:

If
$$h \le q$$
: $\Gamma_X(h) + \sum_{k=1}^p \phi_k \Gamma_X(h-k) =$

$$= \sigma^2 \sum_{k=h}^q \theta_k \varphi_{k-h}.$$
If $h > q$: $\Gamma_X(h) + \sum_{k=1}^p \phi_k \Gamma_X(h-k) = 0$.

When $u_t \sim WN$:

$$\Gamma_X(h) = \Gamma_u(0) \sum_{k=-\infty}^{\infty} \varphi_k \varphi_{k+h}, \ \forall h.$$

Theorem 6: If $\{u_t\}_{t\in\mathbb{Z}}$ is weak. stat., $\mathbb{E}[u_t] = \mu_u$, $\{\varphi_k\}_{k=0}^{\infty}$ is abs. sum., then X_t , defined by

$$X_t \equiv \sum_{k=-\infty}^{\infty} \varphi_k u_{t-k} = \varphi(L) u_t$$

is stat. with mean $\mu_u \sum_{k=-\infty}^{\infty} \varphi_k$ and

$$\Gamma_X(h) = \sum_{j=-\infty}^{\infty} \sum_{k=-\infty}^{\infty} \varphi_j \varphi_k \Gamma_u(h+k-j).$$

If seq. of Γ_u is abs. sum., then so is Γ_X .

Specific processes

MA(2)
$$X_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2}$$
:

$$\Gamma_X(0) = (1 + \theta_1^2 + \theta_2^2)\sigma^2,$$

$$\Gamma_X(1) = (\theta_1 + \theta_1\theta_2)\sigma^2,$$

$$\Gamma_X(2) = \theta_2\sigma^2, \quad \Gamma_X(h) = 0, |h| > 2.$$

AR(1)
$$X_t = \phi X_{t-1} + \epsilon_t$$
:

Causal repr.:

$$X_t = \sum_{j=0}^{\infty} \phi^j \epsilon_{t-j}.$$
$$\Gamma_X(h) = \frac{\sigma^2 \phi^{|h|}}{1 - \phi^2}, \ \forall h.$$

AR(2)
$$X_t = \phi_1 X_{t-1} + \phi_2 X_{t-2} + \epsilon_t$$
:

$$\Gamma_X(0) = \frac{1 - \phi_2}{1 + \phi_2} \frac{\sigma^2}{(1 - \phi_2)^2 - \phi_1^2}.$$

$$\Gamma_X(1) = \frac{\phi_1}{1 - \phi_2} \Gamma_X(0)$$

$$\Gamma_X(h) = \phi_1 \Gamma_X(h-1) + \phi_2 \Gamma_X(h-2).$$

ARMA(1,1)
$$(1 + \phi L)X_t = (1 + \theta L)u_t$$
:
Causal repr.: $\varphi_0 = 1$ and $\varphi_j = \phi^j - \theta \phi^{j-1}$

$$\Gamma_X(0) = \frac{\theta^2 - 2\phi\theta + 1}{1 - \phi^2} \sigma^2,$$

$$\Gamma_X(1) = \frac{(1 - \phi\theta)(\theta - \phi)}{1 - \phi^2} \sigma^2,$$

 $\Gamma_X(h) = (-\phi)^{h-1} \Gamma_X(1), \ \forall |h| > 1.$

Martingale Limit Theory

Martingale def.:
$$\{X_t\}_{t\in\mathbb{Z}}$$
 is m-g \Leftrightarrow $\mathbb{E}[X_t|\mathcal{F}_s] = X_s, \quad \forall t > s.$

M.d.s. def.:
$$\{u_t\}_{t\in\mathbb{Z}}$$
 is m.d.s. \Leftrightarrow $\mathbb{E}[u_t|\mathcal{F}_s] = 0, \quad \forall t > s.$

By def., $\mathbb{E}[u_t u_s] = 0$. An m.d.s. with finite, constant variance is WN.

$$\begin{aligned} \mathbf{M.d.a.} \ \ \mathbf{def.:} \quad & \{u_{t,n}\}_{t=1}^n \text{ is m.d.a. } \Leftrightarrow \\ & \mathbb{E}[u_{t,n}|u_{t-1,n},u_{t-2,n},\dots] = 0, \quad \forall t,n. \end{aligned}$$

Marting. converg. thm: Let X_t be a martingale with $\mathbb{V}\mathrm{ar}[X_t] < \Delta$. Then, as $t \to \infty, \ X_t \overset{a.s.}{\to} X_\infty$, where X_∞ is a r.v. with $\mathbb{V}\mathrm{ar}[X_\infty] < \Delta'$.

Marting. LLN: If u_t is m.d.s. with $\mathbb{E}[u_t^2] = \sigma_t^2$ and $\sup_t (\sigma_t^2) = C < \infty$, then $\frac{1}{N} \sum_{i=1}^n u_i \overset{a.s.}{\to} 0.$

Marting. CLT: If $X_{t,n}$ is a m.d.a. with bounded $\mathbb{E}[|X_{t,n}|^{2+\delta_0}]$, and $\exists \bar{\sigma}_n^2 > \delta_0 > 0$ s.t. $n^{-1} \sum_{t=1}^n X_{t,n}^2 - \bar{\sigma}_n^2 \stackrel{\mathbb{P}}{\to} 0$, then $\frac{n^{-1/2} \sum_{t=1}^n X_{t,n}}{\sqrt{\bar{\sigma}_n^2}} \stackrel{d}{\to} \mathcal{N}(0,1).$

Asympt. Propert. of LP

Lemma on B-N Decompostion: Let $\varphi(x) = \sum_{k=0}^{\infty} \varphi_k x^k$, where the seq. $\{\varphi_k\}$ is abs. sum. Then

$$\varphi(x) = \varphi(1) - (1 - x)\tilde{\varphi}(x), \quad \forall |x| < 1$$
where $\tilde{\varphi}(x) = \sum_{k=0}^{\infty} \tilde{\varphi}_k x^k$ and $\tilde{\varphi}_k = \sum_{s=k+1}^{\infty} \varphi_s$.

If a rand. seq. u_t has $\sup_t \mathbb{E}[|u_t|] < \infty$, then

$$X_t \equiv \sum_{k=0}^{\infty} \varphi_k u_{t-k} = \varphi(L)(u_t)$$

for some seq. φ_k that is abs. sum. If also $\sum_{k=0}^{\infty} k|\varphi_k| < \infty$, then the B-N decomp. of X_t is the RHS of

$$X_t = u_t \sum_{k=0}^{\infty} \varphi_k + \tilde{u}_{t-1} - \tilde{u}_t.$$
 Note that $\sum_{k=0}^{\infty} \varphi_k = \varphi(1)$.

A LLN: If u_t has $\sup_t \mathbb{E}[|u_t|] < \infty$ and $\frac{1}{n} \sum_{t=1}^n (u_t - \mathbb{E}[u_t]) \stackrel{\mathbb{P}}{\to} 0 \text{ as } n \to \infty,$ then, $1 \sum_{t=1}^n (Y_t - \mathbb{E}[Y_t]) \stackrel{\mathbb{P}}{\to} 0 \quad \forall t \text{ as } n \to \infty.$

$$\frac{1}{n} \sum_{t=1}^{n} (X_t - \mathbb{E}[X_t]) \stackrel{\mathbb{P}}{\to} 0, \ \forall t, \text{ as } n \to \infty$$

for an $X_t = \sum_{k=0}^{\infty} \varphi_k u_{t-k}$ def. by a seq. $\{\varphi_k\}_{k=0}^{\infty} \text{ s.t. } \sum_{k=0}^{\infty} k |\varphi_k| < \infty.$

A CLT: Take u_t s.t. $\sup_t \mathbb{E}[|u_t|] < \infty$ and $\{\varphi_t\}_{t=0}^{\infty}$ s.t. $\sum_{t=0}^{\infty} k |\varphi_k| < \infty$. Let $\sigma_{u,n}^2 = \mathbb{V}\text{ar}[\frac{1}{\sqrt{n}}\sum_{t=1}^n (u_t - \mathbb{E}[u_t])]$ for any $n \ge 1$. If $\lim_{n \to \infty} \sigma_{u,n}^2 > 0$ and $\frac{\sum_{t=1}^n (u_t - \mathbb{E}[u_t])}{\sqrt{n\sigma_{u,n}^2}} \xrightarrow{d} \mathcal{N}(0,1)$,

then

$$\frac{\sum_{t=1}^{n} (X_t - \mathbb{E}[X_t])}{\sqrt{n\sigma_{u,n}^2}} \xrightarrow{d} \mathcal{N}(0, (\varphi(1))^2),$$

where $X_t = \sum_{k=0}^{\infty} \varphi_k u_{t-k}$ for any t.

LLN of sample auto co-var.: If $u_t \sim iid(0, \sigma^2)$, and $\sum_{k=0}^{\infty} k |\varphi_k| < \infty$, then for $X_t = \sum_{k=0}^{\infty} \varphi_k u_{t-k}$,

$$n^{-1} \sum_{t=1}^{n} X_t X_{t-h} \stackrel{\mathbb{P}}{\to} \Gamma_X(h).$$

Algebraic tricks

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}, \quad \sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6},$$

$$\sum_{k=1}^{n} k^3 = \frac{n^2(n+1)^2}{4}, \quad \sum_{k=0}^{n-1} ax^k = a \cdot \frac{1-x^n}{1-x}$$

$$\sum_{k=0}^{n-1} ka^k = \frac{(n-1)a^{n+1} - na^k + a}{(a-1)^2}$$

$$\int \cos^2(x) \, dx = \frac{1}{2}[x + \sin(x)\cos(x)]$$

$$\int \sin^2(x) \, dx = \frac{1}{2}[x - \sin(x)\cos(x)]$$

$$\lim_{n \to \infty} (1 + x/n)^n = e^x = \sum_{n=0}^{\infty} x^n/(n!)$$

Examples

5

A simple test from Santos

obs. n=1 and $W \sim \mathcal{N}(\mu,1); \mu$ is unknown.

$$H_0: \mu \leq 0 \text{ v.s. } H_1: \mu > 0.$$

Note that $W \stackrel{d}{=} \mu + Z$, where $Z \sim \mathcal{N}(0, 1)$. E.g., use $\phi(W) = \mathbb{1}(W > c)$. Then, size of $\phi = \sup_{\mathbb{P} \in \mathbf{P}_0} \mathbb{E}_{\mathbb{P}}[\phi(W)] =$ $= \sup_{\mu \le 0} \mathbb{P}(Z > c - \mu) = \mathbb{P}(W > c) \le \alpha, \Leftrightarrow$ $\mathbb{P}(z > c_{1-\alpha}) = \alpha \Leftrightarrow c_{1-\alpha} = \Phi^{-1}(1-\alpha).$

Another test from Santos

 $\{W_i\}_{i=1}^n \text{ is i.i.d. with variance 1. } \mathbf{P} = \{\mathbb{P}: \mathbb{E}_{\mathbb{P}}[(W - \mathbb{E}_{\mathbb{P}}[W])^2] = 1\}. \text{ We want to test}$ $\mathbf{P}_0: \{\mathbb{E}_{\mathbb{P}}[W] \leq 0\} \text{ v.s. } \mathbf{P}_1: \{\mathbb{E}_{\mathbb{P}}[W] > 0\}.$ For any \mathbb{P} , $\sqrt{n}(\bar{W}_n - \mathbb{E}_{\mathbb{P}}[W]) \stackrel{d}{\to} \mathcal{N}(0, 1).$ Then use test $\phi_n = \mathbb{1}(\sqrt{n}\bar{W}_n > c_{1-\alpha}).$ $\sup_{\mathbb{P} \in \mathbf{P}_0} \lim_{n \to n} \mathbb{P}(\sqrt{n}(\bar{W}_n - \mathbb{E}_{\mathbb{P}}[W]) > c_{1-\alpha}) \leq$ $\leq \sup_{\mathbb{P} \in \mathbf{P}_0} \lim_{n \to n} \mathbb{P}(\sqrt{n}(\bar{W}_n - \mathbb{E}_{\mathbb{P}}[W]) > c_{1-\alpha}) =$ $\mathbb{P}(Z > c_{1-\alpha}) = \alpha.$

Linear trend regr.

 $X_t = \mu t + u_t$, $u_t \sim iid(0, \sigma_u^2)$, $X_0 = 0$, and $Y_t = X_t \beta + \epsilon_t$, where $\epsilon \sim iid(0, \sigma_\epsilon^2)$, ϵ_t , and u_t are indep.

Derive asympt. distr. of OLS estimator.

$$\hat{\beta}_n = \frac{\sum_{t=1}^n Y_t X_t}{\sum_{t=1}^n X_t^2} \quad \Leftrightarrow \quad \hat{\beta}_n - \beta = \frac{\sum_{t=1}^n X_t \epsilon_t}{\sum_{t=1}^n X_t^2}.$$

 Γ hen

$$\frac{1}{n^3} \sum X_t^2 = \overbrace{\frac{\mu^2}{n^3}}^{\rightarrow \mu^2/3} t^2 + \frac{2\mu}{n^3} \sum t u_t + \frac{1}{n^3} \sum u_t^2 =$$

$$\mathbb{V}\text{ar}[\frac{2\mu}{n^3} \sum t u_t] = \frac{4\mu^2}{n^6} \sigma_u^2 \sum t^2 \to 0$$

$$\Rightarrow \frac{2\mu}{n^3} \sum t u_t = o_p(1), \text{ by Markov ineq.}$$
By LLN, $\frac{1}{n^3} \sum u_t^2 = o_p(1).$ So $\frac{1}{n^3} \sum X_t^2 \to \frac{\mu^2}{n^3}$. Then consider the numerator:
$$\frac{1}{n^{3/2}} \sum X_t \epsilon_t = \frac{\mu}{n^{3/2}} \sum t \epsilon_t + \frac{1}{n^{3/2}} \sum u_t \epsilon_t =$$

$$= \mathcal{O}_p(1) + \mathcal{O}_p(n^{-1}), \text{ by Markov ineq.}$$
since
$$\mathbb{V}\text{ar}[\frac{\mu}{n^{3/2}} \sum t \epsilon_t] = \frac{\mu^2 \sigma_\epsilon^2}{n^3} \sum t^2 \to \frac{\mu^2 \sigma_\epsilon^2}{3},$$

and

War
$$\left[\frac{1}{n^{3/2}}\sum u_t\epsilon_t\right] = \frac{\sigma_u^2\sigma_\epsilon^2}{n^2}$$
. Then, by m-g CLT

$$\operatorname{Var}\left[\frac{\mu}{n^{3/2}}\sum t\epsilon_t\right] \stackrel{d}{\to} \mathcal{N}(0, \frac{\mu^2 \sigma_{\epsilon}^2}{3}).$$
 By Slutsky,

$$n^{3/2}(\hat{\beta}_n - \beta) \stackrel{d}{\to} \mathcal{N}(0, \frac{3\sigma_{\epsilon}^2}{\mu^2}).$$

What if ϵ_t and u_s are correlated for t=s(and not $t \neq s$)? Only difference is that $\operatorname{Var}\left[\frac{1}{n^{3/2}}\sum u_t\epsilon_t\right] \neq \sigma_u^2\sigma_\epsilon^2$. But this doesn't affect the asympt. distr. of $\hat{\beta}_n$.

Construct consistent estimates of μ and σ_{ϵ}^2 .

$$\hat{\mu}_n = \frac{\sum t X_t}{\sum t^2} = \mu + \frac{\sum t u_t}{\sum t^2}$$
 Denominator $\rightarrow \frac{1}{2}$ and numerator:

 $\frac{1}{m^3} \sum t u_t = o_p(1).$

So
$$\hat{\mu}_n \stackrel{\mathbb{P}}{\to} \mu$$
. For $\hat{\sigma}_{\epsilon}^2$:

$$\hat{\sigma}_{\epsilon}^2 = \frac{1}{n} \sum_{i=1}^{n} (Y_t - X_t \hat{\beta}_n)^2 = \frac{1}{n}$$

$$\frac{1}{n} \sum \epsilon_t^2 - \frac{2}{n} (\hat{\beta}_n - \beta) \sum X_t \epsilon_t + \frac{1}{n} (\hat{\beta}_n - \beta)^2 \sum X_t^2.$$

 $\frac{1}{n}\sum \epsilon_t^2 \stackrel{d}{\to} \sigma_\epsilon^2 + \mathcal{O}_p(n^{-1/2})$ by iid CLT. From before, $(\hat{\beta}_n - \beta) = \mathcal{O}_p(n^{-3/2})$ so $(\hat{\beta}_n - \beta)^2 = \mathcal{O}_p(n^{-3}) \text{ and } \frac{1}{n^3} \sum_{t=0}^{n} X_t^2 =$ $\mathcal{O}_{p}(1)$ implies $\frac{1}{r}\sum X_{t}^{2} = \mathcal{O}_{p}(n^{2})$. Thus, $\frac{1}{n}(\hat{\beta}_n - \beta)^2 \sum X_t^2 = \mathcal{O}_p(n^{-1}).$ Also, $\frac{1}{n^{3/2}}\sum X_t\epsilon_t = \mathcal{O}_p(1)$ implies $\frac{1}{n}\sum X_t\epsilon_t =$ $\mathcal{O}_n(n^{1/2})$. Therefore, $\frac{2}{\pi}(\hat{\beta}_n - \beta) \sum X_t \epsilon_t =$ $\mathcal{O}_n(n^{-1})$. In summary, $\hat{\sigma}_{\epsilon}^2 \stackrel{\mathbb{P}}{\to} \sigma_{\epsilon}^2$.

Two-sided hypoth. w/ unknown σ^2 Let X_1, \ldots, X_n be iid $\mathcal{N}(\mu, \sigma^2)$ where σ^2 is unknown. Consider $H_0: \mu = \mu_0$ v.s. $H_1: \mu \neq \mu_0.$

Define LR test for these hypotheses.

$$LR = \frac{\max f(\bar{X}, \mu, \sigma^2)}{\max f(\bar{X}, \mu_0, \sigma^2)} =$$

$$= \frac{f(\bar{X}, \mu_{\text{MLE}}, \hat{\sigma}_{\text{MLE}}^2)}{\max_{\sigma^2} f(\bar{X}, \mu_0, \sigma^2)} \Rightarrow$$

$$2\ln(LR) = n\ln\left(\frac{\sum (X_i - \mu_0)^2}{\sum (X_i - \bar{X}_n)^2}\right) \xrightarrow{d} \chi^2(1).$$

So, the (asymptotic) LR test is to reject H_0 Show that

$$2\ln(LR) = n\ln\left(\frac{\sum (X_i - \mu_0)^2}{\sum (X_i - \bar{X}_n)^2}\right) > \chi_\alpha^2(1), \quad \text{is a consistent estimator of } \rho \text{ and that } \hat{\rho}_T - \text{where } \chi_\alpha^2(1) \text{ is the } 1 - \alpha \text{ percentile of the } \rho = \mathcal{O}_p(T^{-1/2}).$$

$$\chi^2 \text{ distribution with df. 1.}$$

Whats the critical region of the likelihood ratio test with size $\alpha = 5\%$? The critical Denominator:

$$\{\bar{X}: n \ln \left(\frac{\sum (X_i - \mu_0)^2}{\sum (X_i - \bar{X}_n)^2}\right) > \chi_{.05}^2(1)\}.$$

Estimate ARMA(1,1)

 $X_t = \theta X_{t-1} + \epsilon_t + \epsilon_{t-1}$ where $\epsilon_t \sim iid(0, \sigma_{\epsilon}^2)$ and $|\theta| < 1$.

Derive the distribution of the estimator

$$\hat{\theta}_n = \frac{\sum X_t X_{t-2}}{\sum X_{t-1} X_{t-2}}.$$

Estimator is equivalent t

$$\sqrt{n}(\hat{\theta}_n - \theta) = \frac{\frac{1}{\sqrt{n}} \sum (\epsilon_t + \epsilon_{t-1}) X_{t-2}}{\frac{1}{n} \sum X_{t-1} X_{t-2}}.$$

Use LLN for sample auto-covar. $\Rightarrow \Gamma_X(1)$. Numerator:

$$\sum_{t=0}^{\infty} (\epsilon_t + \epsilon_{t-1}) X_{t-2} = \frac{1}{\sqrt{n}} \sum_{t=0}^{\infty} \epsilon_t (X_{t-2} + X_{t-1}) + o_p(1) + o_p(1).$$

The remaining term is a m.d.s. Take

$$\bar{\sigma}_n = \mathbb{E}[\epsilon_t^2 (X_{t-2} + X_{t-1})^2] =$$

$$= 2(\Gamma_X(0) + \Gamma_X(1))\sigma_\epsilon^2.$$

Then use m-g CLT and Slutsky.

Provide a test with size α for $\theta = 0$. Use Wald test. Under $H_0: \theta = 0, \sqrt{n}\hat{\theta}_n \stackrel{d}{\rightarrow}$ $\mathcal{N}(0,K)$. So, critical region is $C = \{\hat{\theta}_n > 0\}$ $Z_{1-\frac{\alpha}{2}}\frac{K}{n}\} \cup \{\hat{\theta}_n < -Z_{1-\frac{\alpha}{2}}\frac{K}{n}\}.$

AR(1) error term

The model is $Y_t = \theta + u_t$ with $u_t = \rho u_{t-1} + \rho u_{t-1}$ ϵ_t where $|\rho| < 1$, $\epsilon_t \sim iid \mathcal{N}(0, \sigma^2)$. All coefficients θ , ρ , and σ^2 are unknown.

$$\hat{\theta}_n = \frac{1}{T} \sum_{t=1}^{T} Y_t$$

$$\hat{u}_t \equiv Y_t - \hat{\theta}.$$

$$\hat{\rho}_T = \frac{\sum_{t=2}^T \hat{u}_t \hat{u}_{t-1}}{\sum_{t=2}^T \hat{u}_t^2}$$

Observe that $\hat{u}_t = u_t - (\hat{\theta}_T - \theta)$

$$\frac{1}{T} \sum_{t=2}^{T} \hat{u}_t^2 =$$

$$= \frac{1}{T} \sum_{t=2}^{T} u_t^2 + (\hat{\theta}_T - \theta)^2 - \frac{2(\hat{\theta}_T - \theta)}{T} \sum_{t=1}^{T} u_t =$$

$$= T^{-1} \sum_{t=1}^{T} u_t^2 + \mathcal{O}_p(T) + \mathcal{O}_p(T^{-1}) =$$

$$= \mathbb{E}[u_t^2] + \mathcal{O}_p(T^{-1/2}) \xrightarrow{\mathbb{P}} \frac{\sigma^2}{1 - \sigma^2}.$$

Numerator:

$$\frac{1}{T} \sum_{t=2}^{T} \hat{u}_{t} \hat{u}_{t-1} =$$

$$= \frac{1}{T} \sum [u_{t} - (\hat{\theta}_{T} - \theta)][u_{t-1} - (\hat{\theta}_{T} - \theta)] =$$

$$= \frac{1}{T} \sum u_{t} u_{t-1} - \frac{\hat{\theta}_{T} - \theta}{T} \sum_{t=2}^{T} u_{t-1} -$$

$$- \frac{\hat{\theta}_{T} - \theta}{T} \sum_{t=2}^{T} u_{t} + \frac{T - 1}{T} (\hat{\theta}_{T} - \theta)^{2} =$$

$$= \frac{1}{T} \sum_{t=2}^{T} u_{t} u_{t-1} + \mathcal{O}_{p}(T^{-1}).$$
Put def. of the

By def. of u

$$= \frac{\rho}{T} \sum u_{t-1}^2 + \frac{1}{T} \sum \epsilon_t u_{t-1} =$$
$$= \rho \mathbb{E}[u_t^2] + \mathcal{O}_p(T^{-1/2}).$$

Thus.

$$\hat{\rho}_{T} - \rho = \frac{T^{-1} \sum \hat{u}_{t} \hat{u}_{t-1}}{T^{-1} \sum \hat{u}_{t}^{2}} - \rho =$$

$$= \frac{\mathcal{O}_{p}(T^{-1/2})}{\mathbb{E}[u_{t}^{2}] + \mathcal{O}_{p}(T^{-1/2})} = \mathcal{O}_{p}(T^{-1/2}).$$
Which is what we sought.

Derive the prob. limit of

$$\hat{\sigma}_{u,T}^2 = \frac{1}{T} \sum \hat{u}_t^2.$$

and construct a root-T consistent estimator of σ^2 :

From before, $\hat{\sigma}_{u,T}^2 \xrightarrow{\mathbb{P}} \frac{\sigma^2}{1-\sigma^2}$.

Given that $\hat{\rho}_T$ is consistent implies for the

following estimator

$$\hat{\sigma}_{T}^{2} = (1 - \hat{\rho}_{T}^{2})\hat{\sigma}_{u,T}^{2} =$$

$$= (1 - \rho^{2} + \mathcal{O}_{p}(T^{-1/2})) \cdot$$

$$\left(\frac{\sigma^{2}}{1 - \rho^{2}} + \mathcal{O}_{p}(T^{-1/2})\right) =$$

$$\sigma^{2} + \mathcal{O}_{p}(T^{-1/2}).$$

Sample size AR(1)

For a model $Y_t = 4\theta_0^2 Y_{t-1} + \epsilon_t$, by LLN for mixed processes,

$$\lim_{n \to \infty} n \mathbb{V}\operatorname{ar}[\bar{Y}_n] = \frac{\sigma_{\epsilon}^2}{(1 - 4\theta_0^2)^2}.$$

How large a sample would we need in order to have 95% CI s.t. \bar{Y}_n differed from the true value zero by no more than 0.1?

The 95% CI for the true value is

$$\begin{split} \{\bar{Y}_n \pm Z_{1-\frac{\alpha}{2}} \sqrt{\mathbb{V}\mathrm{ar}[\bar{Y}_n]}\} = \\ = \{\bar{Y}_n \pm 1.96 \cdot \sqrt{\frac{\sigma_\epsilon^2}{n(1-4\theta_0^2)^2}}\}. \end{split}$$
 So we need $1.96 \cdot \sqrt{\frac{\sigma_\epsilon^2}{n(1-4\theta_0^2)^2}} \leq 0.1 \Leftrightarrow n \geq \frac{19.6^2 \sigma_\epsilon^2}{(1-4\theta_0^2)^2}. \end{split}$

Trend regr. #2 (fall comp 2018)

$$Y_t = \theta_0 \rho^t + \epsilon_t,$$

$$\rho^n (\hat{\theta}_n - \theta_0) \stackrel{d}{\to} \mathcal{N}(0, \frac{\sigma^2 (\rho^2 - 1))}{\rho^2})$$

$$\rho^{-2n} \sum_{i=1}^{n} \rho^{2t} \to \frac{\rho^2}{\rho^2 - 1}$$

Exp. trend regr. (HW4)

Show consistency and limit. distr. for below estimator of following model.

$$Y_t = \rho^t \theta_o + u_t, \ u_t \sim \mathcal{N}(0, \sigma^2).$$

$$\hat{\theta}_n = \left(\sum_{t=1}^n \rho^{2t}\right)^{-1} \left(\sum_{t=1}^n \rho^t Y_t\right)$$

Use that $\stackrel{L^2}{\to}$ implies $\stackrel{\mathbb{P}}{\to}$.

$$\mathbb{E}[(\hat{\theta}_n - \theta_o)^2] = \mathbb{E}[(\frac{\sum_{t=1}^n \rho^t Y_t}{\sum_{t=1}^n \rho^{2t}} - \theta_o)^2] =$$
$$= \frac{\sigma^2}{\rho^2} \frac{\rho - 1}{\rho^{2n} - 1} \to 0 \text{ as } n \to \infty.$$

So, $\hat{\theta}_n \stackrel{L^2}{\to} \theta_o$, which implies $\hat{\theta} \stackrel{\mathbb{P}}{\to} \theta_o$, i.e., that the estimator is consistent.

Deriving limit. distr.: Rewriting as $\rho^{n}(\hat{\theta}_{n} - \theta_{o}) = \frac{\rho^{-n} \sum_{t=1}^{n} \rho^{t} u_{t}}{\frac{1}{\rho^{2n}} \sum_{t=1}^{n} \rho^{2t}}.$

The denominator:

$$\rho^{-2n} \sum_{t=1}^{n} \rho^{2t} = \rho^{-2n} \frac{\rho^{2n+2} - 1}{\rho^2 - 1} = \frac{\rho^2 - \rho^{-2n}}{\rho^2 - 1} \to \frac{\rho^2}{\rho^2 - 1}.$$

Numerator: Define $Z_n \equiv \sum_{t=1}^n \rho^{t-n} u_t =$ $\sum_{t'=0}^{n-1} \rho^{-t'} u_{n-t'}$. Then, by i.i.d. $u_t \sim$

$$Z_n \sim \mathcal{N}(0, \sum_{t'=0}^{n-1} (\rho^{-2})^{t'} \sigma^2) =$$
$$= \mathcal{N}(0, \sigma^2 \frac{1 - \rho^{-2n}}{1 - \rho^{-2}}).$$

Then the MGF $M_n(t)$ of Z_n is

$$M_n(t) = \exp(\sigma^2 \frac{1 - \rho^{-2n}}{1 - \rho^{-2}} t^2).$$

By Dominated convergence theorem, then

$$\lim_{n \to \infty} M_n(t) = \exp(\frac{\sigma^2}{1 - \rho^{-2}} t^2).$$

Conv. in MGF \Leftrightarrow conv. in distribution. $Z_{\infty} \sim \mathcal{N}(0, \frac{\rho^2 \sigma^2}{\rho^2 - 1}).$

$$Z_{\infty} \sim \mathcal{N}(0, \frac{\rho^2 \sigma^2}{\rho^2 - 1}).$$

Then, by Slutsky.

$$\rho^n(\hat{\theta}_n - \theta_o) \stackrel{d}{\to} \mathcal{N}(0, \sigma^2 \frac{\rho^2 - 1}{\rho^2}).$$

Prob. 2 on HW4

Part (a): $\exists \mathbb{E}[X_t^4] \Rightarrow \exists \mathbb{E}[X_t^2]$ by Jensen. $u_t \equiv X_t \epsilon_t$. This is a m.d.s.

$$\frac{1}{n} \sum_{t=1}^{n} u_{t,n}^{2} - \bar{\sigma}_{n}^{2} = \frac{1}{n} \sum_{t=1}^{n} (X_{t} \epsilon_{t})^{2} - \bar{\sigma}_{n}^{2}.$$

By LLN and Slutsky, $\frac{1}{n} \sum_{t=1}^{n} X_t^2 \epsilon_t^2 \stackrel{\mathbb{P}}{\to}$ $\mathbb{E}[X_t^2 \epsilon_t^2] = \mathbb{E}[X_t^2] \Delta^2$. The last step follows from independence. Choose the sequence $\bar{\sigma}_n^2 = \mathbb{E}[X_t^2]\Delta^2$. Then,

$$\frac{1}{n} \sum_{t=1}^{n} u_{t,n}^2 - \bar{\sigma}_n^2 \stackrel{\mathbb{P}}{\to} 0.$$

Then we can use the Martingale CLT, i.e.,

 $\frac{\frac{\sum_{t=1}^{n} X_{t} \epsilon_{t}}{\sum_{t=1}^{n} X_{t}^{2}}}{\sqrt{n} \frac{\sqrt{\mathbb{E}[X_{t}^{2}]\Delta^{2}}}{\sum_{t=1}^{n} X_{t}^{2}}} \xrightarrow{\mathbb{P}} \frac{\hat{\beta}_{n} - \beta_{o}}{\frac{1}{\sqrt{n}\mathbb{E}[X_{t}^{2}]}} \Delta \xrightarrow{d} \mathcal{N}(0, 1).$

Use Slutsky to get the above. This is the sought result,

$$\frac{\sqrt{n\mathbb{E}[X_t^2]}(\hat{\beta}_n - \beta_o)}{\Delta} \xrightarrow{d} \mathcal{N}(0, 1).$$

$$\hat{\Delta}_n^2 = \frac{1}{n} \sum_{t=1}^n \left(X_t \beta_o + \epsilon_t - X_t \hat{\beta}_n \right)^2 =$$

$$= \frac{1}{n} \sum_{t=1}^n \left[\epsilon_t^2 + 2\epsilon X_t (\beta_o - \hat{\beta}_n) + X_t^2 (\beta_o - \hat{\beta}_n)^2 \right].$$

First term $\stackrel{\mathbb{P}}{\to} \Delta^2$ by LLN; the middle term $o_p(1)$ by LLN; for the last term we use the result in (a) to note that $(\beta_o - \hat{\beta}_n)^2$ is $\mathcal{O}_p(n^{-1})$ while $\frac{1}{n}X_t^2 \stackrel{\mathbb{P}}{\to} \mathbb{E}[X_t^2]$ by LLN. The product of the two is $o_n(1)$ as $n \to \infty$. Thus,

$$\hat{\Delta}_n^2 \stackrel{\mathbb{P}}{\to} \Delta^2$$
.

Part (c): Note that

$$\frac{1}{n} \sum_{t=1}^{n} X_t^2 \stackrel{\mathbb{P}}{\to} \mathbb{E}[X_t^2]$$

by LLN. Combine this with (a) and (b), then by Slutsky,

$$\sqrt{\frac{\sum_{t=1}^{n} X_t^2}{\hat{\Delta}_n^2}} (\hat{\beta}_n - \beta_o) \stackrel{d}{\to} \mathcal{N}(0, 1).$$

MLE

 $\mu_{MLE} = \bar{X}_n \text{ and } \sigma_{MLE}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$ which are derived a follows if X_i, \ldots, X_n are i.i.d and $\mathcal{N}(\mu, \sigma^2)$:

$$\mathcal{L}(X_1,\ldots,X_n)=$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp(\frac{-(x_i - \mu)^2}{2\sigma^2}) =$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left(\frac{-\sum_{i=1}^{n} (x_i - \mu)^2}{2\sigma^2}\right),\,$$

then take logs, then take FOC w.r.t. μ and σ^2 to obtain the result.